
ANN A.EO. ICiGAN 48103 /

Telephone (313)
761-7295

9-1 2319-- 7.5

FIAL ryq; RE'POT

for

CONTTT NAS 9-i 23 19 (Mod.& o 1S)

(N-LS-CR-134021) N RICAL INTEGRIROUTINES FOR NEAREART OPERTIO N S F73-31725
Report (Modern Systems ASalyss, Lc2.,

5Ann Arbor) 79 PHC $6.0 Calysis C ac.iHC $.0i
SCSCL 22A nclas...

G3/30 13495

OAR-EA2CH OPERp A MO

by

..illiam . Po ers

Modern Systems Analysis, Inc.
1235 WINES DRIVE

ANN ARBOR, MICHIGAN 48103

Telephone (313)
761-7295

9-12319-73F

FINAL REPORT

for

CONTRACT NAS. 9-12319 (Mod. No. 1S)

NUIERICAL INTEGRATION ROUTINES FOR

NEAR-EARTH OPERATIONS

by

William F. Powers

September 1973

TABLE OF CONTTTS

Chapter Title Page

1 . Introduction 1

2 General Comments on Numerical
Integrators 2

2.1 General Purpose Integrators 2

2.2 Main Existing Procedures 4

2.3 Recent Developments 5

3 The Extrapolation ethod 11

3.1 History and Basic Motivation of
the Method 11

3.2 Motivation for Order Increasing
Capability 13

3.3 Implementation Notes 16

3.4 Variable-Stepsize, Variable-Order
Considerations 20

L4 Variable Order, Variable Stepsize
Integrators 22

4.1 Storage Methods 22

4.2 Variable Order, Variable Stepsize
Procedures 26

4.3 Self-Starting Adams Methods 29

5 Results with NASA-JSC Computer Programs. . 32

5.1 Parameter Optimization 32

5.2 Numerical Integration 34

6 Sumrtary and Recommendations 35

6.1 Summary35

6.2 Recommendat .- -..... 35

7 References - - 39

Appendix A DIFSYS User': and Listing Al

Appendix B DVDQ Userr-" ;rr a:,d Listing BI

1. INTRODUCTION

The major goals of the extension of NASA Contract

NAS 9-12319 were concerned with building two general purpose

numerical integration schemes into the NASA-JSC computer

system. There were other minor goals associated with the

contract and these will be discussed in Chapters 5 and 6.

Since most of the work was concerned with the numerical

integration schemes, the major portion of this report vrwill be

devoted to describing the state-of-the-art of numerical

integration, the particular integrators built into the JSC

computer system, and the use of the new integration packages.

Those who are only interested in determining how to use the

integrators may proceed immediately to the Appendices, which

are self-contained.

The remaining portion of the report is as follows:

Chapter 2 contains cormments about numerical integration in

general; Chapter 3 discusses the extrapolation numerical

integration technique; Chapter 4 discusses the variable-

order, variable-stepsize Adams numerical integration technique;

Chapter 5 presents results concerned with numerical integration

and optimization in the JSC PEACE parameter optimization program;

and Chapter 6 presents conclusions and recommendations.

1

2. G AL COIZENSTS ON NUMI*ERICAL INTEGRATORS

In this cha:)er we shall briefly discuss the state-of-the-art

of numerical int ration, especially with respect to the

development of -:,koral purpose numerical integration subroutines.

For additional il'ormation, References 1 and 2 should be consulted.

2.1 General Pur.,-e Integrators

As with any E"aineering system, the selection of a

numerical integr4'tion subroutine usually involves a tradeoff

between stability and performance. However, in the past few

years a number o.c stable (reliable), relatively high-performance

general purpose nutterical integration subroutines have been

developed. It :i the purpose of this report to introduce these

routines to the s",,_sion Planning and Analysis Division in as

simple a format kZ possible so that the routines will be used.

As noted in Chapt . I, the user .may proceed directly to the

Appendices if he s only interested in learning how to use the

subroutines.

The subrouttes of this report are referred to as general

purpose subrouti u'z because the schemes are relatively flexible

and apply to a class of problems. The schemes derive

their flexibilitvy v.ainly from the fact that they are both

variable order vaiable stepsize. This fact allows the

routines to adapt efficiently to many different physical situa-

tions. In additi', the numerical integration routine of

Chapter 4 (and A>-jdix B) has excellent diagnostic capabilities

which indicate n.-pical .roblems, e.g., excessive roundoff errors.

2

One of the first questions which must be answered is:

"When should I use a general purpose integrator?" The

integrators described in Chapters- 3and 4 are very reliable,

especially DVDQ (Chap. 4), an& they have been used with ease on

problems from many different disciplines. If a new problem

requiring numerical integration is to be solved, a general

purpose integrator will not only produce reliable answers in

a short time (with a minimum of expensive and tedious human

effort) but usually also teach the user something about the

physical problem, e.g., the stepsize usually contracts in

areas of high acceleration or "action." Thus, it is advisable

to use a general purpose integrator when solving a physical

problem for the first time.

As to whether or not one should continue to use a general

purpose integrator, after fully understanding the process of

the physical situation, is problem dependent. That is, since

a general purpose integrator is in some sense conservative

(stable), one could probably invent rules-of-thumb to be used

with a problem-dependent integrator to give a high-performance

integrator for that particular problem. (This, of course, is

the case with problems in celestial mechanics where many

efficient, problem dependent integration schemes are employed.)

In this process one must always keep in mind the tradeoff of

-human effort and computer effort, e.g., it would not be

worthwhile to spend many man-hours inventing rules-of-thumb

for a particular problem if the problem is to be solved only a

few times, whereas the opposite would be true if thousands of

simulations are anticipated.

2.2 Main Existing Procedures

The numerical integration schemes which are most often

used in engineering analyses are the various fixed stepsize

fourth-order Runge-Kutta and Adams predictor-corrector

methods, 1 ,2 especially the Runge-Kutta methods. One reason

for this is that the Runge-Kutta method is easy to understand,

easy to program, and relatively reliable (once a workable

stepsize has been selected). Comparable properties of these

two approaches (for fourth-order only) are listed below:

Runge-Kutta: Based on Taylor series expansion;
self-starting; requires four function evaluations
per step; functions evaluated on a symmetrical,
but unequal grid; difficult to approximate the
local truncation error, which makes automatic
variable stepsizing difficult.

Adams Predictor-Corrector: Based on interpolation
formulas; not self-starting, usually requires
fourth-order Runge-Kutta scheme to develop the
first few steps; after the starting phase, requires
two*function evaluations per step; functions
evaluated on an equal grid; relatively ease to
approximate the local truncation error, which makes.
automatic variable stepsizing relatively easy;
usually less stable than the Runge-Kutta method.

From the comparisions above, one can see that the

Runge-Kutta (or single step) and predictor-corrector (or

multistep) methods are basically different, and thus, the

performance of an integrator is problem dependent. Also, at

first glance, the predictor-corrector method may appear to be

faster because it only requires half as many function evaluations

(after startup) as the Runge-Kutta method. However, this is not

*This number may be higher in some schemes when more
than one correction is allowed.

5

necessarily the case because on some problems a smaller

step-size is required for the predictor-corrector (because it

is less stable) and/or the !'overhead" (time associated with

carrying out the requirements of the integrator) of a predictor-

corrector scheme is higher than for a corresponding Runge-Kutta

scheme.

With regard to a variable stepsize, which is a necessity

in many problems, one usually uses physical reasoning or a

halving-and-doubling procedure to adjust the stepsize in a

Runge-Kutta scheme.- However, in the past few years a more

attractive technique has been developed, and this will be

described in Chapter 2.3. By comparing predictor and corrector

values in a predictor-corrector scheme, it is relatively easy

to adjust the stepsize.

2.3 Recent Developments

In the opinion of this author, the three main developments

in numerical integration in the past eight years have been the

following (in chronological order):

(i) The development of an efficient rational function

extrapolation numerical integration scheme;3

(ii) The development of higher-order Runge-Kutta

formulas with relatively efficient means for stepsize

control;4 '5

(iii) The development of high-order, variable-order,

variable-stepsize Adams methods in user oriented

subroutine form. 1 ,6

This report is based on the advances noted in (i) and (iii).

The higher-order Runge-Kutta schemes, sometimes called

Fehlberg integration, are not included because MPAD already

has a capability in this area.

All of the general purpose integrators use a variable

stepsize (although they can be used with a fixed stepsize).

The basis for the adjustment of the stepsize in (i) and (iii)

will be discussed in Chapters 3 and 4. The means for efficient

adjustment of stepsize in Runge-Kutta schemes4 ,5 is as follows.

Runge-Kutta formulas can be developed for any order of accuracy,

and for a given order the formula is not unique. For example,

there exist numerous well-known fourth-order Runge-Kutta

formulas. It can be shown that the least number of function

evaluations required for a Runge-Kutta formula of order four is

four, of order five is six, of order six is seven, of order

seven is nine, and so on. Of course, formulas exist for the

orders mentioned above which require more than the least number

mentioned, and this is the basis for the efficient estimation

of the stepsize. For example, suppose we wish to develop a

fifth-order Runge-Kutta scheme with a reliable stepsize

adjustment procedure, and we select a fifth-order formula which

requires the least number of function evaluations possible,

i.e., six. A sixth-order formula requires at least seven function

evaluations. However, suppose we construct a sixth-order formula

with parameter values which match those of the fifth-order

formula on the same six function evaluations required by the

fifth-order formula, i.e., we embed the fifth-order formula in

.the sixth-order formula. If this is done, then the remaining

terms in the sixth-order formula give an excellent estimate

of the truncation error for the fifth-order formula, which

can then be used to adjust the stepsize. Fehlberg4 has shown

that the resultant sixth-order formula requires eight function

evaluations (whereas the minimum number for an arbitrary

sixth-order formula is seven). In summary then, for a fifth-

order Runge-Kutta-formula with the Fehlberg stepsize modification

procedure, eight function evaluations are required (as opposed

to six for a fixed stepsize fifth-order formula).

To conclude this section, we mention some recent comparative

studies of numerical integration schemes.7 12 The first

statement to be made is that it is very difficult to draw

definite conclusions from these studies. For example, the

extrapolation scheme will perform "below par" with a very

poor choice of initial stepsize estimate, and thus, this

scheme performs very well in Refs. 7-10, 12, but relatively

poorly in Ref. 11.. Also, some reports use the specified error

tolerance as the accuracy indicator whereas.others compare the

number of significant digits (compared to either an analytical

solution or a finely-tuned numerical solution which is assumed

to be exact to a large number of digits). These two methods of

comparison can cause differing conclusions.

Another important point in comparing integrators is the

accuracy required. For low accuracies, e.g., 3 to 4 significant

digits, the sophisticated integration packages will probably

perform poorly.. However, in aerospace applications, high

accuracy is usually desired and the situation reverses.

Finally, a summary of major considerations in selecting

or comparing integration schemes is listed below, assuming

comparable accuracies for the integrators.

(1) CPU Time: This is probably the most important

parameter to MPAD users since it indicates how fast the

integrator is, i.e., how much computer time is involved.

(2) Number of Function Evaluations: This parameter

indicates how many times the right-hand sides of the.

differential equations are evaluated in a given run.

In many comparisons this parameter is given the most

emphasis (as opposed to CPU time) with the assumption

that the smaller the number, the better the integrator.

However, the scheme vwith the least number of function

evaluations may not be the fastest (i.e., least CPU time)

because of more overhead. The importance of the number

of function evaluations parameter increases as the

complexity of the right-hand sides of the differential

equations increases. For example, an integrator with

little overhead, large number of function evaluations

may be best when a spherical earth is assumed in a

gravitational model, whereas an integrator with large

overhead, small number of function evaluations is probably

best if an extensive oblate model is employed.

(3) Overhead: It is hard to put a number on this

property of an integrator because it has to do with the

time required to carry-out the logical structure of the

integrator, e.g., checks, rules-of-thumb, etc. built into

the integrator. Usually, Runge-Kutta methods involve

less overhead than predictor-corrector methods, and the

DVDQ (Chap.4) integration package involves more overhead

than any other method reported in the comparisons in

Refs. 7-12. However, on many problems it is the fastest

integrator because of the small number of function

evaluations required, which is due to the extensive

logical structure built into the program.

(4) Storage: In some cases the amount of computer

storage required for an integrator is of importance. As

integrators are developed which are applicable to almost

all problems, this may be of some concern for small computer

systems (e.g., DVDQ requires much more storage than other

popular integrators; see Appendix B).

(5) Scaling: The scaling of a physical problem can make

or break some integrators. We have found that the routines

of Chapters. 3 and 4 retain many of their desirable

properties even on poorly scaled problems, which is not

the case for most other integrators.

(6) Stiffness: A subject of considerable interest in

numerical integration in recent years is "stiff" systems

of differential equations. A stiff system is one which

possesses at least two variables whose natural time scales

are significantly different (on the order of 103), e.g., a

linear system with characteristic roots of -1, -1000.

See Refs. 1 and 2 for further discussions of stiff systems.

10

Reference 1 contains a subroutine for such systems, and

F. T. Krogh of the Jet Propulsion Laboratory is currently

modifying DVDQ to include stiff systems.13

3. THE EXTR-IPOLATION 1ETHOD

The goal of this chapter and Chapter 4 is not to develop

the underlying equations in the integration packages since

these are readily available in textbook form, e.g., Refs. 1

and 2. Instead we shall mainly discuss the basis for the

methods and present simple examples to illustrate the main

features. It is assumed that the reader is already familiar

with the basic concepts of numerical integration, e.g., knowledge

of the workings of the basic Runge-Kutta and predictor-corrector

schemes.

3.1 History and Basic Motivation of the Method

The simplest formula for the numerical integration of the

scalar differential equation

=- f(t,x) , X()Xo0 (3)

is Euler's formula

x(tk+1) = x(tk) + hf(tk,xk), (k=0,1,. . .) (3.2)

where h is the stepsize and x(tk) denotes the value of x obtained

at the k-h step in the process. This is a first-order formula,

and it can be shown1 that the global error (i.e., the difference

between the true and approximate solutions) can be represented

by

error at tk=x (t)-htk)-x
h (tk)=hE(tk)+O(h2) (33)

where xT(tk) denotes the true solution, Xh(tk) is the numerical

solution for stepsize h, and E(tk) is a portion of the error

11

which is a function of the differential equation 2pI if

round-off error is neglected. In 1927, Richardson14 noted the

following property: suppose (3.2) is used twice, first with

a stepsize of h and second with a stepsize of h/2. Then, the

error for each calculation must be of the following form:

xT(tk) - xh(tk)=hE(tk)+Oh2) (3.4)

xT(tk) - xh/2 (tk)=(h/2)E(tk)+O(h2 (3.5)

Elimination of E(tk) from these two equations results in

xT tk)-2xh/2 (tk)-xh (tk)+0(h2) (3.6)

i.e., a second-order approximation has been obtained by combining

two first-order approximations. In many cases such a procedure

gives higher accuracy with fewer .function evaluations. For

example, consider the integration of x=-x from t =0 to t_=1

with x(0)=T. The results using Euler's formula (i.e., Eq. (3.2))
and the "Richardson deferred-approach-to-the-limit or the
"extrapolation" approach (e.g., Eq. (3.6)) are shown in Table 3.1.

h xh(1) Euler's Formula xh(1) Richardson
(# of fn. eval.) (# of fn. eval.)

1 0.0000000 (1) ---
1/2 0.2500000 (2) 0.5000000 (3)
1/4 0.3164063 (4) 0.3828125 (7)
1/8 0.3435089 (8) 0.3708116 (15)1/16 0.3560741 (16) 0.3685393 (31)1/32 0.3620552 (32) 0.3680364 (63)1/64 0.3649865 (64) 0.3679177 (127)

TABLE 3.1 Comparison of Euler and Richardson's Deferred-Approach-

to-the-Limit for i=-x.

13

The true solution to the above problem is x(1)=0.367879

(correct to six places). A simple computation shows that

the extrapolated value corresponding to fifteen function

evaluations is comparable in accuracy to the Euler value

requiring sixty-four function evaluations. Thus, in this

case quite a gain is achieved with the Richardson idea of

extrapolating values from results with a decreasing sequence

of stepsizes.

Although the above idea appears very attractive, it was

somewhat dormant until W. B. Gragg studied the method

extensively in his doctoral dissertationl5 in 1963. The delay

in the use of the idea was probably mainly due to the lack of

a digital computer. Then, based upon the theoretical studies

of Gragg, Bulirsch and Stoer3 developed an efficient numerical

integration scheme involving this idea. The routine presented

in Appendix A is a recently improved version of the Ref. 3

subroutine. Since the scheme is relatively new, compared to

Runge-Kutta and predictor-corrector methods, a good deal of

current research in numerical analysis is concerned rith the

understanding and application of the extrapolation method. Thus,

the scheme should be improved even more in the near future.

3.2 Motivation for Order Increasing Caoability

As the example of the previous section demonstrated, the

order of approximation was improved by one when the extrapolation

was performed on two integrations of the first-order Euler

formula. Actually each additional integration of Euler's

method, vrith a monotonically decreasing stepsize, -followed by

14

extrapolation increases the order of approximation by one, as

in the generation of Table 3.1. The reason for this is because

the error term for Euler's method possesses an asymptotic

expansion of the form

x(tp; h) xT(tp) +E (t)h+E(t)h2+.. +E m(tp)hm+O (hm+1)

where x(t ;h) is the result of the Euler integration at t vwith

stepsize h, xT(tp) is the true solution at t , and El(tp)

Em (tp) are portions of the error which depend only upon the

differential equation (and not h). In Eq. (3.7), the quantities

-T
x (t),El (t p) , . . . , Em(t p) are, in general, unknown.

Consider the use of Euler's formula on m+1 integrations

with stepsizes h > h> . . . >hm. Then, neglecting terms of

order O(hm+1), Eq. (3.7) could be evaluated with each of the

stepsizes (where the left-hand side of the equation is the value

of x(tp) determined by the integrations), and the result is

m+1 linear equations in the unknownms xT(t),E(t), . . . , E (t).
T th

The resultant value for x (t) is an m- order approxiation

of the true solution.

In practice one need not solve the system of linear equations

mentioned above to obtain the higher-order approximation of

xT(t). The sole reason for presenting the above example was

to show how successive integrations increase the order by one

if the Euler formula is the base formula.

Of course one may use the extrapolation idea with any

integration formula as the basic formula. Thus, the question

arises as to the existence of a best base formula. The answer

to such a question would involve to some degree finding a

formula which increases the order of approxymation
by more than

one with each integration; that is, the formula would possess

an error term with an asymptotic expansion of the
form:

x(t ;h)=x (t)+ 2 Ek (tp)hck (c1)(3.8)

Graggl5 showed that if the modified mid-point
rule is used as

the basic formula, then r=1, c=2 in Eq.:(3.8),
i.e., the error

for the modified mid-point rule has an asymptotic
expansion

of the form:

TC 2k
x(t ;h) = x (t + E(h k (3)9)

- p k=1

Gragg's 5 modified midpoint rule is as follows:

hi=H/ni ni set of even increasing integers

= x(t0)

X r xo+hif(to,Xo) (3.10)

Xp+2 = Xp +2hif(t P+1xp+) , pO, . , ni-1

x(t +H;h) = (1/4)Xn +1 +(1/2)xni +(1/4)xni_1,

where H is the basic stepsize (e.g., the output interval). The

integers in niS must be either all even or all odd for

theoretical reasons; Gragg has shown that an even set
has certain

advantages over an odd set, and typical choices are 12,4,6,8,

12,16,24,...} and 12,4,8,16,32,64,...3.

Finally, one other theoretical result due to Gragg
is that

the error between the true solution and the last
extrapolated

value, say 5T(t), is of the form
m p

m (tp)-x (t h2ol h , (3.11)

16

where h > h > ... h, if the modified midpoint formula is

employed.

3.3 Implementation Notes

The heart of the extrapolation numerical integration

scheme is a table of values which we shall call the "T-table",

after Bulirsch and Stoer.3 To understand the operation of the

method it is probably best to consider an example of its operation.

Example: As with our previous examples, assume that the base

formula is Euler's method. In the previous section vie showed

that an th- order approximation could be obtained by solving

a system of m+1 linear equations. Actually, the solution of the

linear system can be avoided by employing a recursive extrapola-

tion process due to Aitken. 17 Let us first write the resultant

table and recursive formula, and then use a simple example to

motivate the result.

Suppose four integrations vwith stepsizes h > h> h2 > h3

are employed on the interval [tp 1 ,t] 1ith the resultant

values x(tp;ho), x(t ;hl), x(t ;h2), x(t ;h3). The following

T-table is then constructed by the recursive formula

S= T+ + (+ - T)/[(h./hi+m)-1] (3.12)
m m-1 m-1 m- i

17

Order 1 column

x(t ;h)=TO Order 2 column

To Order 3 column

x(t ;hl)=T T
p V 0 Order 4 column

T To
3

x(t ;hb)T 2 T

T2

X(t ;h)=T 1

p 3 o

FIGURE 3.1. T-Table for Polynomial Extrapolation with

Euler's Method.

In the table above only the first column is computed by

numerical integration. The remaining columns are generated

by the algebraic equation (3.12). Thus, with four integrations

of the first-order Euler's method, a fourth-order result, T

can be inferred. In fact, if one sets m=3 in Eq. (3.7) and

evaluates the equation at h=h ,hj,h 2,h3 , then the solution of

the four equations for x (t) will be precisely To, which is

obtained by a well-defined recursive process. Intuitively

one would expect that the solution becomes more accurate as

one either moves down a column or moves to the right along a

diagonal. Gragg 15 has proved that under reasonable conditions,

the T-table for polynomial extrapolation with the modified

midpoint rule has the following properties:

(i) The order n column converges to the solution

faster than the order m column, vrwith n>m.

(ii) The principal diagonal, i.e., To,T,...,T ,...,

converges to the solution faster than any column.

Thus, one should take the bottom element from the last column

as the best estimate of the solution, e.g., T0 in the example

of Figure 3.1.

To fix the interpretation of the T-table, let us perform

some simple computations. We shall show why T2 is a third-

order approximation, and verify that T2 obtained by the recursive

relation is the same as the value obtained by solving the

corresponding system of linear equations.

The minimum number of.integrations for a third-order

approximation vith Euler's method is three. Thus, assuming

ho=h,h1 =h/2,h2 =h/4 v we have (at t p):

x(h)=xT+E1 h+E2 h2+0(h 3)

x(h/2) =x+E 1 h/2+E2 h2/4+0(h) (313)

x(h/4) =xT+E 1h/4+E2 h2/16+0(h 3)

One can easily verify that Eq. (3.12) implies

T =2x(h/2)-x(h)

T1=2x(h/4)-x(h/2), (3.14)

which correspond to Eq. (3.6) developed earlier. An alternate

interpretation of Eqs. (3.14) is that they represent Eq. (3.13)

with El eliminated and O(h 2) terms neglected. In fact the

elimination of E 1 from Eqs. (3.13) implies

xT=2x(h/2)-x(h)+h 2 E2 /2+0 (h3)

xT=2x(h/4)-x(h/2) +h2E 2/8+0(h3). (3.15)

Then, upon elimination of E2 from Eqs. (3.15), the follovwing

19

third-order approximation of xT is obtained

xT= [x(h)-6x(h/2)+8x(h/4)]/3+0(h13). (3.16)

This value, of course, corresponds to the value T2 obtained

by repeated use of Eq. (3.12).

Before we consider variable stepsize and order aspects of

the method, note that the name "polynomial extrapolation" is

due to the fact that the value of x(t p;0) is obtained by using

a polynomial fit of the data x(t ;h), x(t ;hl) , ... to

extrapolate the value at h=O. It is not necessary to use a

polynomial fit of the data, and in fact, the Bulirsch-Stoer.

extrapolation scheme uses a rational function fit of the data.

In most simulations to date, the rational function procedure

has given better results. In the case of rational function

extrapolation with the midpoint rule, the form of the T-table

remains the same, however the recursive formula (3.12) is

replaced by~

T =0-1

Ti=x(t ;hi) (3.17)

k -
T1 -

. (k1

k-l -k-2

These are the formulas in the subroutine of Appendix A.

20

3.4 Variable-Stensize, Variable-Order Considerations

The main reason for using variable stepsize and order

methods is to develop.the most efficient scheme possible for a

specified accuracy. From the previous sections it is apparent

that more than one stepsize is utilized in the basic operation

of the extrapolation algorithm, and the only questions with

respect to stepsize have to do with the initial choice and the

final choice, e.g., h and hm if r[h/2,h /4,...,hm=h /2m] is

the sequence.

The comparative studies in Refs. 7-11 indicate that a

poor choice for h- can cause inefficiency in the scheme,
0

e.g., if h is too large the extrapolated values may be

contaminated by round-off and if h is too small it is not

taking full advantage of the extrapolation process. Both the

scheme of Appendix A and the original version (pp. 96-99,

Ref. 1) have means for adjusting h by checking how many values

are required for the first column of the T-table (i.e., if too

few are required, the stepsize is too small; if too many are

required, the stepsize is too large).

The determination of order and the final stepsize, hm,

are somewhat coupled. The algorithm of Appendix A can generate

six columns, which implies a possible twelth-order scheme since

the orders of the columns go up by twos with the midpoint formula

(see Eqs. (3.9), (3.10)). The termination of integrations

(or the determination of hm) varies from basic step to basic

step. Integration is terminated when two successive approxima-

tions T - k and T-k+ differ by less than the specified error

21

tolerance, and the value Tn - k + 1 is taken as the best estimate.

This feature is one of the strongest aspects of the scheme

since the cutoff is determined by comparing successive better

approximations to the solution. One may consult the table

on page 90 of Ref. 1 to see a striking example of this feature.

4. VARIABLE ORDER, VARIABLE
STEPSIZE INTEGRATORS

In this chapter we shall discuss the basic ideas behind

variable order, variable stepsize Adams. predictor-corrector

methods. Although there exist relatively efficient variable

stepsize Runge-Kutta integrators, e.g., Ref. 4, there does not

appear to be an efficient way of changing the order in a

Runge-Kutta scheme. The two main variable order, variable

stepsize Adams methods are those due to Krogh and Gearl1

Krogh's program is discussed and listed in Appendix B, while

Gear's program is listed on pp. 158-166 of Ref. 1.

4.1 Storage Methods

Before we discuss means of storing information available

in a predictor-corrector method, let us write the first few

Adams formulas for future reference. With

x = f(t,x), x pX(t p),f p=(t ,Xp), h=tp+1-t p (4.1)

we have the following.

Adams-Bashforth (Predictors) Error

x p+1 -xp= (h/12)(23fp- 16fp-15fp-2) (9h4/ 24) (4)

xp+1-xp=(h/24) (55fp-59fp_ +37fp2-9 fp_-3) (251h5/720)x(5)

22

23

Adams-Moulton (Correctors) Error

Xp+1-xp=h fP+1 -(h2/ 2)

Xp+1-Xp=(h/2)(fp +f) (h12)

Xp+ -x p=(h/12)(5, 8-fpp+)
- (h4 /24)x

x +-x =(h/24)(9fp + 19f-5fp-1 + fp-2) -(19h5/7 x(5)
p+1 p p- 720p-22

The above formulas are used with a kth (or k-1) order predictor

and kth order corrector, where a formula is k--h order if its

error term is of the form Ck+1 hk+1 x(k+1) . Classically, the

Adams. predictor and corrector formulas were written as
k

xp+1=x + h a.f (Predictor)(4.2)p+ p 3=o j p-j
k

x =x + h a.fp+-j (Corrector)(4.3)j= p+1-j'

and stored in the computer in the form x ,fpf , . . ' fp-k'
Actually one loses a great deal of free information by choosing

this method for storing back information. Let us first state

two other means for storing back information, and then discuss

the advantages of using these methods.

Backward Difference Table

Store: xp, i-1 fp (4-4)

(Used in DVDQ the notation will be explained below.)

Scaled Derivatives

Store: z =[X ,h , . (h /q/)x()]T (45)
(Used by Gear' and popularized- by Nordsieck. 16

It can be shown that well-defined linear transformations connect

all three means of representation.1 We shall see below, by means

of an example, how one would construct such a linear transformation.

The Adams predictor-corrector formulas written in

backward difference form are

(P) k.- fth
x =x + h q V (k order) (4.6)

j=O

S(C). hkj=O q P Jfp+ 1, k+1-order) (4.7)

where the different order predictor and corrector formulas are

employed since these are precisely the formulas used in DVDQ.

The notation is as follows:.,

vOf =frtp + jffp -V fj (jO))(4.8)

P P PC p P p P7pfp = ftp+ 1 'Xp+ 1 , fp+ P p+1 .

Let us consider an example which clarifies the notation and

demonstrates how one would construct a linear transformation

between the various means of representation, e.g., between

Eqs. (4.2), (4.3), (4.6), and (4.7).

Example: Consider the second-order Adams-Bashforth formula, i.e.,

x (P) - Xp = (h/2)(3fp-fp_). (4.10)
p+1 . p

With respect to Eq. (4.6), k=2, so in backward difference form

Eq. (4.10) can be written as

(P) 1
p+1 = X + h O j (4.11)
oj=0

or

(P) = x + h (q0 P f+ q1 V (412)p+ 1 p fp p

We shall now employ the notation definitions of Eq. (4.8) to

write Eq. (4.12) in terms of function evaluations only, and then

determine qo and ql so that Eq. (4.11) matches Eq. (4.10). By

definition:

S1 ofp of f -f
pfp , fp p o p p-1

Upon substitution into Eq. (4.12), we have

x(P) = x+hq 0 f+q1 (f 1)
p+1 p p p-1

or

x(P)= x+h[(q +q)f -q fp (4.13)

Comparison of Eqs. (4.10) and (4.13) implies

qo+ q1 = 3/2 , q1 = 1/2 , (4.14)

which is the desired linear transformation between the coefficients

of Eqs. (4.2) and (4.6) for the second-order case.

Now that we have seen that the backward difference

representation of the predictor-corrector formulas is no more

difficult than the standard means of representation, the question

arises as to what we gain out of such a representation. The

answer is given by noting the folloving equations:

0

V f p = f p - f p = h [(f _-f)/(-h)] h[(p_-1)/(-h)] hX

V fp (h / 2)x p

n (hn/ n)x (n +) (4.15)

Equation (4.15) has great significance since the major portion

of the local truncation error can be represented by (see Gear,

p. 111)

k+1 x(k+) + O(h k), (4.16)Ck+1 p

i.e., the higher-order differences indicate the local truncation

errors for various order integrators since they are proportional

to the higher-order derivatives of x at t . Thus, by employing
p

this means of representation, or the scaled derivative representa-

tion, one has the means for not only adjusting the stepsize but

also for choosing the most efficient order integration formulas.

4.2 Variable Order, Variable Stepsize Procedures

In the previous section we saw that by storing back informa-

tion in either backward difference or scaled derivative form,

--we have the means for estimating -the local truncation error at-

various orders with no extra computation. In this section we

shall present a method due to GearI for adjusting .the stepsize

and order automatically.

Suppose that the integration has proceeded long enough to

generate a sufficiently long "tail" of scaled derivatives or

backward differences. Later we shall discuss problems associated

with starting the algorithms. Suppose we are currently at t with
p

thk-- order integration formulas, stepsize h, and scalar truncation

therror parameter E. Use the k-- order formulas and stepsize h

to compute X(tp+1), where tp+1=tp+h. From our "tail" of backward

differences or scaled derivatives we can easily compute the

thtruncation error associated with the k- order formula, and make

27

the following check:

C hk+1 x(+1) ? E. (4.17)
k+1 p+1

If Inequality (4.17) is satisfied, we accept the computed value

for x(tp+1); if the inequality is not satisfied, we must determine

a smaller stepsize h to compute a value x(tp+ I) which satisfies

(4.17). In either case we proceed to the tests below.

We now wish to either possibly increase the stepsize if

(4.17) was satisfied or decrease the stepsize if (4.17) was

not satisfied. In addition we wish to check to see if the

order should be increased or decreased. Define:

New stepsize = zh, z scalar unknown. (4.18)

If all quantities were known exactly and the k+1-derivative

of Xp+1 remained constant, then the optimal stepsize would be

defined by (4.17) with the equality, i.e.,

Ck+ (zh)k+(k+1) E (4.19)k+1 p+1

Then, solving for z we obtain 1

Z= - -al k+l (k+l) k + I
z E= E/ICk+1hk+ Xp+) 1 (4 . 2 0)

However, the quantities are not knovm exactly and x(k+l) does

not, in general, remain constant so a safety factor is included

in Eq. (4.20), e.g., 1
k (k 1)] k+l

k = E/C 1hk+ (4.21)
k = 1.2 k+ p+11

where the k subscript is attached to z to imply that this is

th
the stepsize multiplier associated with the k-- order integration

formula. Since we also have backward differences which imply

(k) (k+ 2)k) and x(k+2) , we can determine the optimal stepsizes at then+1 P+1

28

neighboring orders, i.e., at the k-1 and k+1 orders. Operating

in exactly the same way as we did in forming Eq. (4.21), we

obtain (with appropriate safety factors)
1

zk1 = E/[Chkx)] (Order k-1) (422)Zk-1 - 1.3 k p+1

1

Zk+i i E/ Ck+hk+2x(k+2)]i k+2 (Order k+I)(4.23)

The safety factors 1.2, 1.3, and 1.4 are chosen so that we have

the following order of priority: no order change, lower the

order, and increase the order. The order which produces the

largest value of z in Eqs. (4.21), (4.22), (4.23) is selected

as the integration formula order for the next integration.

With the procedure above, an arbitrary value for h may

result, and thus to employ the current "tail" of information,

interpolation must be used to shift the information to the

new stepsize. As shown by Gear1 , this may be done by means of

a matrix multiplication. Also, because. of the overhead associated

with implementing the tests and interpolation, the above

procedure is not performed on each step in Gear's program; see

page 157 of Ref. 1 for a discussion.of how the procedure is

implemented.

The same ideas form the basis for changing order and stepsize

in DVDQ. However, DVDQ only allows halving and doubling of

the stepsize, which Krogh claims is more efficient when the

order is to be varied. Also, DVDQ surveys the local truncation

error at four orders to build more stability into the order

changing procedure.

29

4.3 Self-Starting Adams Methods

To conclude this chapter, we shall present an example

to demonstrate how predictor-corrector methods may be used

without employing alternate integration schemes to get them

started, e.g., many existing fourth-order predictor-corrector

subroutines employ a fourth-order Runge-Kutta scheme to

generate the required starting values. Before we consider

the example, let us consider an alternate method for estima-

ting the major portion of the local truncation error in a

predictor-corrector scheme. Suppose the predictor and

corrector are-of the same order.- Then, denoting the true

solution of the differential equation at t by xT , it can be
p p

shown that (Ref. 1, p. 111):

(P) xT k+lx(k+1) k+2)x +C kh + O(h (4.24)

(C) T k+1 (k+1) ohk+2)C) = xT + kh (+ O(h (4.25)

Upon elimination of xT between these two equations, we obtain
p

(P) XC) kxO+hk+2
(P (C) h+k+) (Ck-k) + 0(h) , (4.26)
p p P k

where everything is known to order k+1 except x(k+1). Thus,
p

solving for x (k1):

x (k +1), Ix (P) (C) /hk+1(C (4.27)P P P (C). (427)

Then, given an estimate of x+1), we can estimate the difference

between the true and corrected solutions from Eq. (4.25), i.e.,

)x(C)-xTI _ khk+lx k+l)l , (4.28)

.2O

where x(k + 1) is estimated from Eq. (4.27). Upper and lower
p

limits, Eu and EL, respectively, are usually specified to

indicate when the stepsize should be halved or doubled, e.g.,

x(C)xTI T > E u 4 Halve stepsize (4.29)

EL => Double stepsize (4.30)

Let us now use this method in an example which demonstrates a

self-starting Adams procedure.

Example: Given x=f(t,x), t ,x(t)=xo, and error constants

EL, Eu, and E. Also, an initial stepsize h must be specified

and this value should be saller than one would expect to result

with a fourth-order integration scheme. For sake of illustration,

assume that only one correction is employed after each predictor

step. Consider the first-order Adams predictor and corrector

formulas. Then,

(P)
1 =o+h f (4.31)

(C) (P)
C) = x+ho f t1,x)]. . (4.32)

We now check to see if the stepsize should be changed by using

Eq. (4.27) to estimate x1 , and.then checking

EL x(C) T Eu

or,

EL I(x - x 1C) (4.33)

After making this test, we either halve, double, or keep the

same stepsize. Let h be the resultant stepsize. Ve then form the

first components of the backward difference table

ExC) o 1 ff (434)

VWe now have enough information to use the second-order

Adams, formulas. Again using a single correction we form:

x(P) = x1+(h/2)(3fl-f 0) (4.35)

x2 C) x 1 +(h/2)[f 2 (t 2 ,X2
() + f] (436)

Of course if we are storing backward differences, we would use

the backward difference version of the predictor-corrector

equations in the actual calculation (i.e., Eqs. (4.6), (4.7)).
(C) **"

Given x2, we again employ Eq. (4.27) to estimate x2, and

check to see if the stepsize should be changed by

EI 2 x2 E (4 .37)

After this test, we either halve, double, or keep the same

stepsize, and then augment the difference table to form

(C) o 12 2(38
" x (C) Vf 2, IV 1f2 , V2 f2]. (4.38)

One then proceeds in the same manner to the third-order formula,

and eventually the difference table will possess sufficient

information to allow a switch over to the automatic order and

stepsize changing procedure described in the previous section.

Of course, if one desires a fixed order predictor-corrector

method, e.g., fourth-order, the above starting procedures would

be used up to fourth-order and then sufficient information will

exist for the use of the fourth-order formulas.

In Appendix B a listing of DVDQ is presented along with a

sample program.

5. RESULTS WITH NASA-JSC COMPUTER PROGRAMS

In this section further results involving the NASA-JSC

PEACE parameter optimization program will be discussed. Since

most of the work in this area was done in the first portion of

the contract (as opposed to the extension), and is thoroughly

documented in Ref. 18, we shall only discuss recent results.

5.1 Parameter Optimization

The main modification to the PEACE program involved the

addition of the Fletcher method with a one-dimensional-search.

The method was simulated on the stage-and-half configuration

used for the simulations in Ref. 18. It was found that the

Fletcher method with a one-dimensional search did not perform

as well.as either the DFP or Broyden algorithms (see Table 5.1).

It appears that the terminal convergence properties are poor

because the H-matrix probably becomes "contaminated" by the

switching of the formulas for the H-matrix. Note that, from

Table 5.1, the rate of convergence of the Fletcher method

slowed considerably after the first time that the formulas

were switched. That is, the test within Fletcher's method

implied that the DFP formula should be used until the sixth

iterate when the Broyden formula was used. Thereafter the

convergence was very slow. Recommendations for use of the

schemes will be given in Chapter 6.

32

Iteration COST (All with 1-D Search)
Number DFP lroyden Fletcher

O .1611. 1611. 1611.

1 271.1 271.1 271 .1

2 13.75 13-75 13.75

3 2.792 2.792 2;792

4 1.311 1.311 1.311

5 .8897 .8897 .:8897

6 .2636 .2636 .2636*

7 .1621 .1621 .2462

8 .1563 .1563 .1605

9 .1554 .1554 .1580*

10 .1461 . .1461 .1580

12 .1183 .1183 .1572

14 - .1046 .1045 .1548

16 .0972 .0967 .1472

18 .0923 .0921 .1470

20 .0888 .0886 .1413

*(In Fletcher column, * indicates Broyden formula used;
otherwise DFP formula used. The Broyden formula was
also used on the 15th and 19th iterates.)

TABLE 5.1 Comparison of DFP, Broyden, and Fletcher (all with

1-D search) on Stage-And-Half Configuration.

5.2 Numerical Integration

The extrapolation numerical integration scheme of

Appendix A has been built into the stage-and-half configuration

version of the PEACE parameter optimization program. Since the

program had its fqrmer integration scheme (fourth-order Runge-

Kutta) built into the program (as opposed to being subroutined),

the extrapolation scheme will probably not perform as efficiently

as possible. However, the resultant integrations should give

some indication of its efficiency in a problem with a considerable

number of discontinuities, and it should give some indication as

to the accuracy of the Runge-Kutta integrations previously obtained.

The computer program will be tested by NASA-JSC personnel.

6. SUIMARY AND RECOQTENDATIONS

6.1 Summary

Two general purpose numerical integration computer programs

have been delivered (and checked out) to NASA-JSC personnel.

These are the Bulirsch-Stoer extrapolation scheme (1972 version)

and Krogh's variable-order, variable-stepsize Adams method.

User's guides and listings of the programs are presented in the

Appendices.

The PEACE parameter optimization program was modified to

include Fletcher's method with a one-dimensional search and the

extrapolation integrator. In addition, W. F. Powers presented

seven lectures on optimal control and numerical integration to

Mission Planning and Analysis personnel in August 1973.

6.2 Recommendations

1.) VWith respect to parameter optimization, the Broyden

and DFP algorithms are recommended if good teriinal

convergence is desired. In this respect, Broyden's

method has always performed better than DFP, but

not appreciably better. Fletcher's method (without

a 1-D search) appears to work well in the early

stages, and especially on problems where the H-matrix

in the DFP method is having trouble. However,

because of the H-matrix switching it appears to have

trouble obtaining rapid terminal convergence.

35

2.) The Broyden method appears to do naturally and

continuously what the Fletcher method does roughly,

i.e., take tendency to singularity of the H-matrix

into account. From a theoretical point of view,

the Broyden method appears to be the most attractive.

3.) With respect to numerical integration, the DVDQ

scheme has the best set of diagnostics and it is

strongly recommended for use on new problems. The

resultant output should indicate to the user a

natural partitioning of the problem since the

changing stepsize and order usually indicate a change

in physical characteristics of the solution, also.

One may then use this information to define fixed-

stepsize, fixed-order formulas in the various phases

of the physical problem if a large number of production

runs are anticipated. That is, there is no use paying

the overhead of DVDQ if all of the runs will be

similar with respect to physical characteristics.

4.) The extrapolation numerical integration subroutine

has less diagnostic capability than DVDQ, but appears

to be faster on runs where the right-hand side of the

differential equation is not unduly complicated. This

scheme is relatively new and should be continuously

improved by research in the next decade. It may be

more optimal for 'AD problems than DVDQ because it

is a one-step method which should not be as adversely

affected by multi-stage problems as DVDQ.

5.) It is not claimed that the numerical integration

routines listed in the Appendices will speed up

existing programs, ihich usually employ a fixed

stepsize that changes from one well-defined physical

phase of the problem to another. However, they

should speed up the process Of choosing optimal

stepsizes and determining accurate reference cases

which will aid in the development of production

programs. In this respect, the possibility of

including both routines in SVDS should be considered.

6.) Rough rules-of-thumb for choosing a numerical

integration scheme are the following:

(i) if low accuracy is all that is required

(e.g., three significant digits) and/or there

exists a large number of physical phases (which

require starting and stopping the integrator),

then a low-order Runge-Kutta scheme (e.g., order

one to four) with sufficiently small fixed

stepsize is probably optimal;

(ii) if high accuracy is required (e.g., five or

more significant digits), then either DVDQ or

extrapolation should be employed. The relative

efficiency of these schemes increases with the

order of accuracy required. To date, comparative

studies 7 - 12 have shown the two schemes to have

the following properties: DVDQ has higher over-

.head, but smaller number of function evaluations

than extrapolation, and for many problems,

roughly the same computer time. In Ref. 9 a

rule for choosing-between the two is proposed:

if the right-hand side of the differential

equation is relatively simple, extrapolation

will probably give the least CPU time, whereas

DVDQ will give the least if the right-hand-side

is lengthy (e.g., if gravitational anomalies

are taken into account).

7. REFREN CES

1-" Gear,-CC.I:-, Numerical Initial Value-Problems in Ordinary
Differential Equations, Prentice-Hall, Englewood Cliffs,

.N.J., 1971.

2. Lapidus, L., and Seinfeld, J.H., Numerical Solution of
Ordinary Differential Equations, Academic Press, New
York, 1971.

3. Bulirsch, R., and Stoer, J., "Numerical Treatment of
Ordinary Differential Equations by Extrapolation
Methods," Numer. Math., Vol. 8, No. 1, pp. 1-13, 1966.

4. Fehlberg, E., "Classical Fifth-, Sixth-, Seventh-, and
Eighth-Order Runge-Kutta formulas with Stepsize Control,"
NASA TR R-287, October 1968.

5. Sarafyan, D., "Estimation of Errors for the Approximate
Solution of Differential Equations and Their Systems,"
Louisiana State University Technical Report No. 15,
August 1966.

6, Krogh, F.T., "VODQJSVD/DVD-Variable Order Integrators
for the Numerical Solution of Ordinary Differential
Equations,!" TU Doc. No. CP-2308, NPO-11643, Jet Propulsion
Laboratory, May 1969.

7. Clark, N.W, "A Study of Some Numerical Methods for-the
Integration of Systems of First-Order Ordinary Differential
Equations," Report No. ANL-7428, Argonne National
Laboratory, March 1968.

8. Fox, P., "A Comparative Study of Computer Programs for
Integrating Differential Equations," Numerical Mathematics,
Vol. 15, No. 11, pp. 941-948, 1972.

9. Hull, T.E., et. al., "Comparing Numerical Methods for
Ordinary Differential Equations," SIAM J. on Numerical
Analysis, Vol. 9, No. 4, pp. 603-637, 1972.

10. Frazho, D.B., Powers, W.F., and Canale, R.P., "Numerical
Integration Aspects of a Nutrient Utilization Ecological
Problem," to appear in Proceedings of SIAM Conference on
Numerical Solution of Differential Euations, 1973.
(Also, available as University of L ichigan, Dept. of
Aerospace Engineering Report AC-101, February 1973).

39

40

11. Dickmann, E.D., "Comparison of the Performance of Two
Integration Routines," NASA-1SFC internal memorandum
(no number), 1973.

12. Pesapane, J.P., and Powers, W.F., "Evaluation of the
Performance of Numerical Integration Schemes on a
Reentry Problem," Presented at 1972 SIAM. Conference
on NumericalSolution of Differential Equations,
Austin, Texas.

13. Krogh, F.T., Personal Communication, Jet Propulsion
Laboratory, October 1972.

14. Richardson, L.F., "The Deferred Approach to the Limit,
I-Single Lattice," Trans. Roy. Soc., London, Vol. 226,
pp. 299-349, 1927.

15. Gragg, W.B., "Repeated Extrapolation to the Limit in
the Numerical Solution of Ordinary Differential
Equations," Doctoral Dissertation, UCLA, 1963.

16. Nordsieck, A., "On Numerical Integration of Ordinary
Differential Equations," Math. Comp., Vol. 16, No. 1,
pp. 22-49, 1962.

17. Aitken, A.C., "'On Interpolation by Iteration of
Pronortional Parts," Proc. Edinburgh Math. Soc., Vol. 2,
pp. 56-76, 1932. (Also, discussed in Hildebrand, F.B.,
Introduction to Numerical Analysis, McGraw-Hill, New
York, p. 49, 1956.)

18.. Powers, W.F., "Near-Earth Orbital Guidance-and Remote
Sensing," Modern Systems Analysis Report 9-12319-F,
December 1972. (Final report for NASA-MSC Contract
9-12319.)

APPENDIX A
DIFSYS

USER'S GUIDE AND LISTING

SUBROUTINE DIFSYS is a double precision rational function

extrapolation numerical integration scheme. It is an improved

version of the ALGOL subroutine reported in Ref. 3. The

original subroutine is also documented in FORTRAN in Ref. 1

(pp 96-99). The version presented in this appendix was supplied

by its developer, R. Bulirsch. Some user's may prefer to use

the original version (presented in Ref. 1) because -it contains

more comment cards and error checks. However, to date, we have

not encountered any difficulties with the faster, more stream-

lined version presented in this appendix.

DESCRIPTION

DIFSYS is called by:

CALL DIFSYS (N, YF, EPS, H, X, Y)

where:

N=order of system (number of differential equations)

YF=a user supplied subroutine which calculates the

derivatives, and has the form

SUBROUTINE YF(X,Y,DY)

- = independent variable

= dependent variable vector (must be dimensioned

in YF)

DY = derivatives (right-hand side of the differential

equation vector; must be dimensioned in YF)

(Note: YF must be declared in an EXTERNAL statement

in the program which calls DIFSYS.)

Al

EPS = stepsize error control (DIFSYS will reset EPS to

10- 1 1if the user supplies a smaller number)

H = maximum integration interval

X = independent variable

Y.= dependent variable vector (must be dimensioned N in

calling program)

The'quantities N, EPS, H, X, and Y(N) must be supplied before

DIFSYS is called.

OPERATION

This subroutine does only one integration step per call.

Hence, if the interval of integration is [Xo,Xf] , where xf may

be defined implicitly, the user must test for xf (or the implicit

condition) and adjust H at the end so that x is satisfied

exactly.

EXAMPLE PROGRAM

Consider the integration of:

x = -x + tx

t,tf,x(t),i(t o) specified.

Define y1 =x, y2 =x. Then, the following program will execute

the integration with DIFSYS.

IM4PLICIT REAL*8(A-H,O-Z)

EXTERNAL YF

DIMENSION Y(2)

READ (5,100)EPS,H,TO,TF,(Y(I),I=1,2)

N=2

T=TO

CALL DIFSYS (N,YF,EPS,H,T,Y)

WRITE(6,101)T,(Y(I),I=1,2)

IF(T.GE.TF)STOP

IF((T+H).GT.TF)H=TF-T

GO TO 1

100 FORMAT(6D13.6)

101 FOR1AT('TIiE=',D20.8,'Y(I)=',2D20.8)

ETD

SUBROUTINE YF(T,Y,DY)

IMPLICIT REAL*8(A-H,O-Z)

DI1MENSION Y(2),DY(2)

DY(1)=Y(2).

DY(2)=-Y(2)**2+Y(1)*T

RETURN

END

A4l

0001 SU -rOUT I NE DIF SYS(N,YF,EPS,H,X ,Y)

0 ? REAL*ox Y(N) ,YA(10),YL(1C) ,Y1 (10),DY(9),DZ(10) ,DT(10,
7).

1 D(7.) ,S(10),X,XN,H,G,e,L I,U,V,C,TA,W

00J3 REAL 4 EP(4)/0.4E-1 ,C.16E-2,0 .64E-4,0.256E-5/

Ou0l LOIGICAL*1 KONV,BO,KL,GR
0005 JTI=O

000b FY=1.
0007 ETA=AGS(EPS)
0008 IF(E TA.LT.I.E-11) ETA=1.E-11

0009 03 100 I=1,N
0010 100 YA(I)=Y(I)
0011 CALL YF (X,Y,DL)
0012 10 XN=X+H
0013 BO=.FALSE.
0014 DO 110 I=1,N
0015 110 S(I)=0.DO
0016 M=l
0017 JR=2
0018 JS=3
0019 DO 260 J=1,10

0020 IF(. i'OT.bO) GOTO 200

0021 D(2)=1.77777777777777DC
0022 D(4)=7.1111111111111100
0023 D(b)=2.844444444444D4401
0024 GO TC 201
0025 200 D(2)=2.2500
0026 D(4)=9.DO
0027 D(6)=3.6D1
0028 201 IF(J.LE.7) GOTO 202

0029 L=7

.0030 D(71=6.401

.0031 GO TO 203
0032 202 L=J
0033 D(L)=M*M
00C34 203 KONV=L.GT.3
0035 M=M+M
0036 G= H /V
0037 8=G+G
0038 DO 210 1=1,N
0039 YL(I)=YA(I)
0040 210 YM(I)=YA[I)+G*DZ(I)
0041 M=M-1
0042 DO 220 K=.I,M
0043 CALL YF(X+K*G,YM,DY)

0044 DO 220 I=1,N
0045 U=YL(I)+B*DY(I)
0046 YL(I)=YN(I)
0047 YM(I)=U
0043 U=0ABS(U)
0049 IF(U.GT.S(I)) S(I)=U

0050 220 CONTINUE
0051 CALL YF (XNYMDY)
0052 KL=L.LT.2
0053 GR=L.GT.5
0054- FS=0.

Lq (233 1Iz1,N

00':-, V =lT (I, v 1)

0057 C=(Y I(I) YL(I)+G*DY(Il)40.5LDO

S T I:T(I,1)=C
005w TA=C

0 J6. IF(KL) GC TC 233

0061 DC 231 K=2,L.

C0062 R=D(K)*V
0063 B=BI-C
0064 W=C-V
0065 U=V
0066 IF(6.EQ.0.DO) GO TO 230
0067 B=W/B
0068 U=Cn
0069 C=BI*B
0070 230 V=DT(I,K)
0071 DT(I,K)=U
0072 231 TA=U+TA
0073 IF(.NOT.KONV) GO TO 232
0074 IF(OABS(Y(I)-TA).GT.S(I)*ETA) KCNV=.FALSE.

0075 232 IF(GR.OR.S(I) EQ.0.DO) GO TO 233
0076 FV=dABSW)/S(I)

0077 IF(FS.LT.FV) FS=FV "

0073 233 Y(I)=TA
3079 IF(FS.EQ.0.DO) GO TO 250
0080 FA=FY
0081 K=L-1
00 2 FY= (EP(K)/FS)*~(1./ L+K))

0083 IF(L.EQ.2) GO TO 240
0084 IF(FY.LT.O.7*FA) GO TC 250

0085 24C IF(FYGT.0.7) GO TO 250

0086 H=H FY

0087 JTI=JTI+1
0088 IF(JTI.GT.5) GO TO 30
0089 GO TO 10
0090 25C IF(KONV) GO TO 20

0091 0(3)=4.00
0092 0(5)=1.601

0093 80=.NOT.BC
0094 M=JR

0095 JR = JS

0096 260 JS=M+M

OC97 H=H*C.5DO

0098 GO TO 10

0099 20 X=XN

0100 H=H FY

0101 RETURN

0102 30 H=U.DO
0103 DO 300 I=1,N
0104 300 Y(I)=YA(I)

0105 RETURN
0106 END

APPENDIX B

DVDQ

USER'S GUIDE AND LISTING

SUBROUTINE DVDQ is a double precision variable order, variable

stepsize Adams predictor-corrector numerical integration

slh",developed by F. T. Krogh of the Jet Propulsion Laboratory.

Az.one may see by inspecting the listing, the program is

extremely well-documented and over half of the listing is devoted

to comment cards. Before we discuss the implementation of the

deck, some .notable features of the program are listed below:

(i) Maximum integration formula order = 16.

(ii) Halves and doubles for variable stepsize.

(iii) Only 1AIN and DVDQ are necessary, i.e., one

need not employ a separate subroutine for the right-

hand sides of the differential.equations.

(iv) Order of the predictor = order of the corrector -1.

(Recall the general property that

xT = x (+ O(hk+1)
P P

.. x(C),m + O(hk+m+l) + O(hr+1)
p p

where k=order of predictor, r = order of the corrector,

m = number of applications of the corrector. This

implies that with k = r or r-1 the same order of

accuracy is obtained for a single corrector application.)

(v) Has "GSTOP" feature, i.e., if the trajectory is to

B1

12

be terminated by a condition of the form G(tf,xf)=O,

the program can handle it automatically.

Description

DVDQ is called by:

CALL DVDQ(1EQ, T, Y, F, KD, EP, IFLAG, H,

HM-INA, HIMAXA, DELT, TFINAL, I XSTEP, KSTEP,

KEMAX, EMAX, KQ, YN, DT)

Not all of the arguments must be supplied by the user. The

arguments which must be supplied by the user will be listed and-

briefly discussed below. Further explanation and definitions

of the remaining terms may be found in the general comment

section in the initial portion of the listing.

NEQ = number of differential equations

T = independent variable

Y = dependent variable vector

F = right-hand side of the vector differential equation

KD = order of the differential equation (not to be
confused with the order of the integration scheme).
For example, if " = f(t,x,.) is to be integrated
directly, KD = 2 ; usually KD = 1 since x = f(t,x)
is the usual trajectory analysis system.

EP = local truncation error indicator. It is an absolute
error indicator in the sense that the local error is
kept less than EP in all components of the differential
equation. If it is desired to control the error on
each component of the vector differential equation
separately, EP should be specified as a vector of
neEative numbers. The negative values alert the
routine to a vector error specification. See the
discussion of EP in the comment cards for further
options.

H = initial stepsize estimate. (Probably better to

guess smaller than one would expect with a fourth-
order scheme since the routine builds up from a
first-order formula. However, the choice is not
critical since the stepsize is adjusted rapidly.)

B3

HMINA = minimum allowable stepsize

IMlAXA = maximum allowable stepsize

DELT = output interval. Since t e.scheme only halves
and doubles, use DELT = 2 H if possible;
otherwise, it will interpolate for output values.

TFINAL = final value of the independent variable.

MXSTEP = maximum number of steps allowable between
output points.

In addition DT(17,NEQ), YN(), Y(), F(), KQ() must appear

in a DIMENSION statement in MAIN. See the example below or the

comment portion of the listing for the particular dimensions.

Operation

Only one call is made to DVDQ; thereafter the simple

statement CALL DVDQ1 is used. The heart of operation of DVDQ

is a computed GO TO statement which is driven by the parameter

IFLAG, which has values 1, 2, ., 8. The full implications

of each value of IFLAG are discussed in the initial comment

section of the listing. Although the operation of DVDQ may

appear complicated at first glance (because of the eight values

for IFLAG), the operation is straightforward with excellent error

detection capabilities. Probably the easiest way to get

acquainted with DVDQ is to study the simple program given below.

Informal comments are given to explain roughly what each value of

IFLAG is indicating. The listing follows the example.

Example: Integrate x1=x2

2=-x2+ tx I

with to=0 ,tf=2, x 1 (0)=1.0, x2 (0)=O.O. The following program

will execute the integration with DVDQ.

FORTRAN G(41336) MAIN

IMPLICIT REAL*8 (A-H,O-Z)
C SINCE SYSTEM IS FIRST_ORDER WITH TWO DIFFERENTIAL EQUATIONS,
C Y,F,KQ,YN ARE OF DIMENSION 2. DT IS ALWAYS DIMENSIONED DT(17,NEQ).

DIMENSION Y(2),F(2),DT(17,2),KQ (2),YN (2)
N EQ=2
T=O.DO
Y (1)=1.DO
Y (2) =0.DO
KD=1
EP=1 .D-5
H=1.D-1
HMINA=1.D-4
HMAXA=1 . DO
DELT=2.D-1
TFINAL=2. DO
MXSTEP=1000
CALL DVDQ(NEQ,T,Y,F,KD,EP,IFLAG,H,HMINA,HMAXA,DELT,TFINAL,

1MXSTEP,KSTEP,KEMAX,EMAX,KQ,YN,DT)
GO TO 10 TrLA; . 2- - = 76-

20 CALL DVDQ1 VLA,-rcJ -rl, L L V
10 GO TO (1,1,3,4,5,6,7,8) ,IFLAG (1 = %tberor, 2= C ec-re)
1 F(1) =Y(2)

F (2)=-Y(2)**2+Y (1-)*T -'
GO TO 20 IF-A=3 = O=> PC Pc

4 SWRITE(6,100) T,(Y(I),I=1,2) -e o A iJG

STOP 50

5 STOP 5 - o- $r
7 HMINA=HNINA/2.DO 7L-= P CA 8uor 14. /rrqI Aer& (posesLv rL

GO TO 20 gTc c-nroI&==s EA;i P,
8 STOP 8 kuA 41<A10/ R:Suie1 5.7tP De 7Ecstr NADfj) oaEr,
100 FORMAT('TIME= ',D23.15/'Y (I)= ',2D23.1) £.I(A&=C T10-- L 4erGZC re

END iAi L'LLieG Ai.SQuCraic -' DP,

LISTICS* SOURCE STATEMENTS = 32,PROGRAM SIZE 1400
'ISTICS* NO DIAGNOSTICS GENERATED
IN MAIN

SUBROUTINE fdVDQ(/NEQ/,/T/,/Y//F/,/KD/,/EP/, /IFLAG/,/H/I/HMINA/,
* /HMAXA/,/DELT/,/TFINAL/ ,/MXSTEP/,/KSTEP/,/KEMA'X/,/EMAX/,
* /KQ/,/YN/,/DT/)

DOUBLE PRECISION VARIABLE ORDER INTEGRATION SUBROUTINE
FOR THE SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS.

ANALYSIS AND CODING BY FRED T. KROGH, AT THE JET PROPULSION
LABORATORY, PASADENA, CALIF. APRIL 1, 1969.
THIS DECK IN EBCDIC FORMAT.'

CONVERTED FOR USE ON 360/75 BY MELBA W. NEAD, JPL APRIL, 1970.

AT THE END OF THIS LISTING INSTRUCTIONS ARE GIVEN FOR REMOVING
SOME FEATURES AND FOR ADDING OTHERS. THE GSTOP FEATURE IS
EXPLAINED NEAR THE END OF THE LISTING. ,

VARIABLES IN THE CALLING SEQUENCE HAVE THE FOLLOWING TYPES.
INTEGER NEQKD(1),IFLAGMXSTEPKSTEPKEMAXKQ(1)
REAL EP(1),HMINA,HMAXA,EMAX
DOUBLE PRECISION T,Y(I),F(1),H,DELT,TFINAL,YN(1).,DT(17,1)

PARAMETERS WHICH MUST BE ASSIGNED VALUES BEFORE CALLING
DVDQ ARE NEQ, T, Y, KD, H, HMINA, HMAXAt DELT,

TFINAL, AND MXSTEP.
DVDQ IS USED ONLY ON THE -INITIAL ENTRY. ALL OTHER
ENTRIES ARE MADE BY CALLING DVDQ1. IN ADDITION TO

THE PARAMETERS MENTIONED ABOVE THE USER MUST ASSIGN
'VALUES TO F (ONCE PER STEP INITIALLY, AND TWICE PER STEP
AFTER GETTING STARTED) AND EP (EITHER INITIALLY, OR DURING

THE INTEGRATION IF A RELATIVE ERROR TEST IS USED).

THE FOLLOWING PARAMETERS GIVE ADDITIONAL INFORMATION ABOUT THE
INTEGRATION AND ARE USED FOR STORAGE. THEY SHOULD NOT BE
CHANGED BY THE USER. IFLAG,KSTEPKEMAX,EMAX,KQ,YN, AND DT.

C AN EXAMPLE CF HOW ONE MIGHT SET UP THE CALLS TO DVDQ IS GIVEN
;C BELOW.

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION F(2),DT(17,2),Y((4,YN ,KQ2)

C SET PARAMETERS AND INITIAL CONDITIONS
NEQ = 2
KD = 2
MXSTEP = 500
EP = 1.0-6
HMINA = 0.
HMAXA = 100.
T = 0.
Y(1) = 1.
Y(2) = 0.
Y(3) = 0.
Y(4) = 1.
H = 1.
DELT = 1.
TFINAL = 12.
NEVALS = 0

CC NOW MAKE FIRST ENTRY
'C CALL DVOQ(NEQ,T Y, F KDEPIFLAGHHMINA, HNAXAELT,
C I TFINAL,MXSTEP,KSTEP,KEMAX,EMAX,KQ,YNDT)
C GO TO 2
C
CC ALL SUBSEQUENT ENTRIES MADE HERE
C 1 CALL DVDQ1
C. 2 GO TO. (10, 10,3030,50,60,50,50) ,.I.FLAG
C
CC EVALUATE DIFFERENTIAL EQUATION, IFLAG = 1 OR 2

C. 10 R .= Y(1)**2 + Y(3)**2
C R = R*DSQRT(R)
C F(1) = -Y(1)/R
C F(2) = -Y(3)/R
C NEVALS = NEVALS+1
C. GO TO 1
C
CC OUTPUT, IFLAG = 3, OR FINISHED, IFLAG = 4
C 30 PRINT 13,T,Y(1),Y(3),KSTEP,NEVALS
C 13 FORMAT(' ',F6.201P2D20.12,2IS)
C IF (IFLAG.EQ.3) GO TO 1
C STOP
-C
CC ERROR CONDTION, IFLAG = 5, 7 OR 8.
C 50 PRINT .12,IFLAGH
C 12 FORMAT(' IFLAGgH=',13,D20.10)
C GO TO 30

CC EP TOO SMALL, IFLAG = 6
C 60 EP.= 32.*EMAX*EP

-C PRINT 14,T,EP
C 14 FORMAT(P TrNEW EP=',F6.2,D15.6)
C GO TO 1
C - END
C.
C

C
C
C THE USAGE OF THE VARIABLES IS GIVEN BELOW.

C
C NEQ=NUMBER OF EQUATIONS (INPUT)
C
C T=INDEPENDENT VARIABLE (INITIAL VALUE SUPPLIED BY THE USER)

C
C Y=CURRENT VALUE OF DEPENDENT VARIABLE. THE INITIAL

C VALUE OF Y MUST BE SPECIFIED BY THE USER BEFORE
C .. . THE.FIRST ENTRY...THE .DIMENSION OF Y MUST BE

C AT LEAST AS GREAT AS THE SUM OF THE ORDERS OF

C THE DIFFERENTIAL EQUATIONS WHICH ARE BEING

C- INTEGRATED. IF.WE-LET. KD(I.) DENOTE THE ORDER

C OF THE I-TH DIFFERENTIAL EQUATION, THEN Y(J)
C IS THE K-TH DERIVATIVE OF THE L-TH CCMPONENT,

C WHERE L IS THE SMALLEST INTEGER FOR WHICH

C KD(1)+KD(2)+...+KD(L).GE.J AND K=KDIL)+J-1-(KD(1)

C +KD(2)+...+KD(L)), J=I,2,...,(KD(I)+KD(2)+...+KD(NEQ)).
C (FOR EXAMPLE, FOR THE SYSTEM F(1)=UPP, F(2)=VPP, WHERE P

C DENOTES A PRIME, Y(1)=U, Y(2)=UP9 Y(3)=V, Y(4)=VP.)
C
C F(I)=KD(I)-TH DERIVATIVE OF THE I-TH COMPONENT WITH RESPECT

C TO T, I=1,2,. .. NEQ. THE USER MUST PROVIDE
C THE CODE WHICH COMPUTES F GIVEN Y AND T.

C
C KD GIVES THE ORDER OF THE DIFFERENTIAL EQUATIONS IN THE

C SYSTEM. KO MUST BE LESS THAN OR ECUAL TO 4.
C (FOR DIFFERENTIAL EQUATIONS WITH DIFFERENT ORDERS SET

C KDO.LT.O. IF THIS IS DONE IT IS ASSUMED THAT KD IS A VECTOR

C AND THAT ABS(KD(I)) GIVES THE ORDER OF THE I-TH EQUATION.)

C
C EP IS A PARAMETER USED TO CONTROL THE LOCAL ERROR.

C IF EP IS POSITIVE THE LOCAL ERROR IS KEPT LESS
C THAN EP IN ALL COMPONENTS OF THE DIFF. EQ.
C (THE. ESTIMATED LOCAL ERROR IS ;KEPT LESS THAN EP IN

C -.. THE-..(KD(I-)-l)-ST DERIVATIVE OF.THE I-TH .COMPONENT. THUS

C FOR EQUATIONS WITH ORDER GREATER THAN ONE, THE ERROR

C IN A DERIVATIVE IS ESTIMATED. IN THIS CASE THE VALUE OF

C EP REQUIRED TO OBTAIN A GIVEN ACCURACY IN THE DEPENDENT

C VARIABLE DEPENDS ON THE SCALING.)
C- IF EP.LT.O, THEN IT IS ASSUMED THAT EP

C IS A VECTOR. LET K BE THE SMALLEST VALUE
C OF I FOR WHICH EP(I).GE.O. FOR I.LT.K
C THE LOCAL ERROR CONTROL IS BASED ON
C ABS(EP(I)), AND FOR I.GEK IT IS BASED ON

EP(K). IF ONE WANTS A RELATIVE ERROR TEST--

C FOR EXAMPLE, THE LOCAL ERROR IS TO BE KEPT

C LESS THAN C*P WHERE C IS A CONSTANT
C AND P IS A POSITIVE FUNCTION OF T AND Y,
C THEN ONE SHOULD SET EP=C*P WHEN IFLAG=1.
C IF EP=O AND HMAXA.NE.O, IFLAG IS SET EQUAL 8. IF EP=O AND HMAXA=0,

C NO ERROR TESTS ARE PERFORMED AND THE ORDER(S) AND STEPSIZE ARE

C NOT CHANGED. THIS OPTION SHOULD NOT BE USED IF KQ(I)=l FOR ANY I.
C
C IFLAG IS USED FOR COMMUNICATION BETWEEN THE INTEGRATOR
C .. . AND THE PROGRAM .WHICH. CALLS- IT. THE VALUE
C OF IFLAG SHOULD NOT BE CHANGED BY THE USER.
C THE FOLLOWING VALUES OF IFLAG HAVE THE. FOLLOWING 1MtEANINGS.

C. =1 .THE. VALUE .OF..Y..FOR THE CURRENT. STEP .HAS BEEN
C PREDICTED. THE USER SHOULD COMPUTE F AND CALL DVDQI.

C IF A RELATIVE ERROR TEST IS USED THE NEW VALUE
C OF EP SHOULD ALSO BE COMPUTED HERE.
C =2 THE VALUE OF Y FOR THE CURRENT STEP HAS BEEN
C CORRECTED. THE USER SHOULD COMPUTE F AND CALL DVDQI.
C =3 AN OUTPUT POINT HAS BEEN REACHED (SEE DESCRIPTION

C OF DELT), PRINT RESULTS AND CALL DVDQ1.
C =4 T=TFINAL IF DVDQI IS CALLED WITH T=TFINAL AND

C IFLAG=4, IFLAG IS SET EQUAL TO 8. IF THE VALUE OF

C TFINAL IS CHANGED THE INTEGRATION WILL CONTINUE.

C =5 KSTEP=KSOUT (SEE THE DESCRIPTICN OF MXSTEP).
C =6 EMAX.GT..l AND IT APPEARS TO THE SUBROUTINE THAT

C REDUCING H WILL NOT HELP BECAUSE OF ROUND-OFF ERROR.

C IF THIS OCCURS A LARGER VALUE OF EP (OR OF ABS(EP(KEMAX)) IF
C EP IS A VECTOR) SHOULD PROBABLY BE USED. IF EP IS NOT
-C INCREASED, TOO SMALL A STEPSIZE IS LIABLE TO BE USED. (WE HAVE
C FOUND THAT REPLACING EP WITH 32.*EMAX*EP WORKS QUITE WELL.)
C INCREASING EP IN THIS WAY. WILL NOT DEGRADE THE ACCURACY,

G- - HOWEVER IF..THE NATURE OF.THE. PROBLEM CHANGES IT MAY PAY TO

C USE A SMALLER VALUE OF EP LATER IN THE INTEGRATION.
C =7 ABS(H).LT.HMINA. TO CONTINUE WITH THE CURRENT
C- VALUE OF H, SET HMINA.LE.ABS(H) AND CALL DVDQ1.
C IF THE INTEGRATOR HAS JUST HALVED H ONE MAY CONTINUE

C WITH TWICE THE STEPSIZE BY SIMPLY CALLING DVDQI. (SUCH

C AN ACTION IS RISKY WITHOUT A CAREFUL ANALYSIS OF THE

C SITUATION.) IF THE STEPSIZE HAS NOT JUST BEEN HALVED

C (ABS(H).LT.HMINA MAY BE DUE TO THE USER INCREASING THE

C VALUE DF HMINA OR TO HAVING TOO SMALL AN H AT THE END

C OF THE STARTING PHASE.) THE INTEGRATION WILL CONTINUE

C WITH THE CURRENT VALUE OF H AND A RETURN TO THE USER WITH

C IFLAG=7 WILL BE MADE ON EVERY STEP UNTIL ABS(H).GE.HMINA.
C =8 ILLEGAL PARAMETER IN THE CALLING SEQUENCE. IF DVDQ1

C IS CALLED WITH IFLAG=8 THE PROGRAM IS STOPPED.

C
C H=CURRENT VALUE OF THE STEPSIZE. IN SELECTING THE INITIAL

C VALUE FOR H, THE USER SHOULD REMEMBER THE FOLLOWING--

C 1. THE INTEGRATOR IS CAPABLE OF CHANGING H QUITE QUICKLY AND

C THUS THE INITIAL CHOICE IS NOT CRITICAL.

C .2. IF IT DOES NOT LEAD TO PROBLEMS IN COMPUTING THE DERIVATIVES

.C (E.G. BECAUSE OF OVERFLOW OR TRYING TO EXTRACT THE SQUARE

C ROOT OF A NEGATIVE NUMBER), IT IS BETTER TO CHOOSE H MUCH

.C TOO LARGE THAN MUCH TOO SMALL.
.C 3. IF H*DELT.LE.0 INITIALLY, AN IMMEDIATE RETURN IS MADE

C WITH IFLAG=8. THE SIGN OF H IS WHAT DETERMINES THE

C DIRECTION OF INTEGRATION.
C - 4. IF DELT=H*(2**K) K A NONNEGATIVE INTEGER THEN OUTPUT

C . VALUES WILL BE OBTAINED WITHOUT DOING AN INTERPOLATION.
C
C HMINA AFTER GETTING STARTED, AND WHENEVER H

C IS HALVED, ABS(H) IS CCMPARED WITH HMINA.
C IF ABS(H).LT.HMINA CONTROL IS RETURNED TO

C THE USER WITH IFLAG=7.
C
-C HMAXA THE STEPSIZE IS NOT DOUBLED IF

C DOING SO..WOULD MAKE ABS(H).GT.HMAXA
C
C . DELT ENABLES THE USER TO SPECIFY THE POINTS WHERE

C OUTPUT IS DESIRED. LET TOUT=DELT + THE VALUE OF T THE LAST

C TIME CONTROL WAS RETURNED TO THE USER WITH IFLAG=3. (INITIALLY

C .TOUT=THE INITIAL VALUE OF T.) CONTROL IS RETURNED TO THE

C ... -- USER.WITH IFLAG=3.W HENEVER T=TOUT... IF TOUT DOES NOT FALL .

C- ON AN INTEGRATION STEP, OUTPUT VALUES ARE OBTAINED BY

C INTERPOLATION ON THE FIRST STEP THAT (T-TOUT)*H.GT.0.

C INTERPOLATED VALUES FOR BOTH Y AND F ARE COMPUTED.

C . (NOTE THAT A.RETURN WITH IFLAG=3 IS ALWAYS MADE

.C BEFORE TAKING THE FIRST STEP.)
C
C TFINAL CONTROL IS RETURNED .TO .THE USER WITH IFLAG=4 WHEN

C T REACHES TFINAL. IF TFINAL DOES NOT FALL ON AN INTEGRATION

C STEP VALUES AT TFINAL ARE OBTAINED BY EXTRAPOLATION.

C-
C MXSTEP ON THE INITIAL ENTRY, AND ON ENTRIES

C WITH 2.LT. IFLAG.LT.6 KSOUT IS SET EQUAL TO
C KSTEP+MXSTEP..AT THE END OF EACH STEP KSTEP IS INCREMENTED

C AND COMPARED WITH KSOUT. IF KSTEP.GE.KSOUT CONTROL IS

C RETURNED TO THE USER WITH IFLAG=5. (THUS IF DELT IS
C SUFFICIENTLY LARGE, CONTROL WILL BE RETURNED TO THE USER
C WITH IFLAG=5 EVERY MXSTEP STEPS.)
C
C KSTEP=NUMBER OF INTEGRATION STEPS TAKEN (COMPUTED.

-- ..:- "BY THE.INTEGRATOR.)......
C
C KEMAX=INDEX OF COMPONENT RESPONSIBLE FOR THE

C VALUE OF EMAX (SEE BELOW).

C EMAX=LARGEST VALUE IN ANY COMPONENT OF (ESTIMATED ERROR)/EP

C . -.. ORDINARILY THE.._ST.EPSIZE IS ..HALVED IF. EMAX.GT.l. WI.TH A

C RECENT HISTORY OF LOCAL ROUND-OFF PROBLEMS VALUES OF EMAX AS

C LARGE AS 1 ARE PERMITTED. THE STEPSIZE IS NOT HALVED ON ANY

C STEP THAT ROUND OFF ERROR APPEARS TO BE LIMITING THE PRECISION.

C
C KO(I)=HIGHEST ORDER DIFFERENCE USED IN INTEGRATING

C THE I-TH EQUATION. (COMPUTED BY THE INTEGRATOR)

C
C YN=A VECTOR WITH THE DIMENSION OF Y USED TO STORE
SC THE VALUE OF Y AT THE END OF EACH INTEGRATION STEP.

C
C DT=AN ARRAY WITH DIMENSION DT(17,NEQ) USED TO

C STORE THE DIFFERENCE TABLE.

C
DOUBLE PRECISION TOUT,TLTPD,TPDITPD2,HH,FAC
DOUBLE PRECISION DD,DGAMGASPTTP
DIMENSION DD(19),D(18) GAM(17,4),GAS(17),PT(18),FAC(3)
EQUIVALENCE DD(2),D(1))

- DIMENSION ETA(15,15)
C .4

DATA KMAXO/4/.
C KMAXO IS THE MAXIMUM ORDER DIFFERENTIAL EQUATION

C THIS SUBROUTINE WILL INTEGRATE.
SC

DATA FAC/L.DO,.500D.166666666666666667D0/
C FAC(J)=1/(FACTORIAL Jl, J=1,2,.o.,MAX(2,KMAXO-1)
-C

DATA KQMAX/16/
C KQMAX GIVES THE MAX.IMUM ORDER.

"C THERE IS LITTLE POINT IN HAVING KQMAX MUCH BIGGER THAN THE NUMBER

C OF DECIMAL DIGITS IN THE MANTISSA.

C IF KQMAX IS SET LESS THAN 6, DT, D, AND PT SHOULD BE DIMENSIONED

C AS IF KQMAX=6.

C
DATA RNDKBIT2/8.88E-16,108/

C RND IS APPROXIMATELY 2**(3-B) WHERE B IS

.C - THE NUMBER OF BITS IN THE MANTISSA.

C KBIT2=2*B+2 WHERE B IS THE NUMBER OF BITS IN THE MANTISSA.

C IF THE DERIVATIVES ARE NOT COMPUTED TO THE ACCURACY EXPECTED

C FROM THE WORD LENGTH OF THE COMPUTER (FOR EXAMPLE BECAUSE OF

C CANCELLATION PROBLEMS OR TABULAR DATA), THEN THESE CONSTANTS

C CAN BE CHANGED TO REFLECT THE NUMBER OF BITS WHICH ARE

C SIGNIFICANT IN THE COMPUTED DERIVATIVES. (THIS IS NOT NECESSARY,

C BUT IS WISE IF THE ACCURACY REQUESTED IS DIFFICULT TO OBTAIN

.C BECAUSE THE DERIVATIVES HAVE SO FEW SIGNIFICANT DIGITS.)

C
DATA P1,PO1 ,P25,P3EI/.1,.O1,.25,3./

C T.E ABOVE DATA STATEMENT CONTAINS VARIOUS CONSTANTS

..C USED IN THE SUBROUTINE.

...... DATA PT/1.DO,2DO,4,.DO,8.DO.,.16.DO.,32.DC,64.DO,128DO..256.DO, .

1 512. D00,1024 .DO,2048.DO,4096.DO,8192.DO,16384.DO,32768.DO,
2 65536.DO,131072.00/

C. PT(J)=2**(J-1), J=1,2,...,KQMAX+2

C- DATA PTSI,PTS2,PTS3,PTS4,PTS5,P5/1.,2.:,4.,8.,16.,.5/
DATA PTSL,PTS2, PTS4,PTS5,P5/1.,2., 8.,16.,.5/

B10

C
DATA GAS/1. DO-.5DO,-8.333333333333333333D-02,
1 -4. 16666666666666667D-02,-2.6388888888888888889-02,
2 -1. 875D-02, -1.426917989417989420-02,
3 -1. 1367394.1798941 799D-02 ,-9.356536596119929450-03,
4 -7.89255401234567.901D-03,-6.78584998463470686D-03,
5 -5.92405641233766234D-03,- 5.23669325795028507D-03,
6 -4.677498407042264520-03,-4.21495223900547286D-03,
7 -3.8268 9 9 5 5 3 2 11 8 8 4 4 2 D- 03,- 3 . 49734984534991765D-03/

.C GAS(I) GIVES THE I-TH ADAMS-MOULTON CORRECTOR
-C COEFFICIENT, I=1,2,...,KQMAX+I.
C

DATA GAM(01,1O),GAM(02,01),GAM(03,01),GAM(04,01),GAM(05,01),
* GAM(06,01).,GAM(07,01),GAM(08,01) ,GAM(09,01),GAM(10 ,01) ,
* GAM(11,01),GAM(12,01),GAM(13,01),GAM(14,01),GAM(15,01),
* GAM(16,01) ,GAM(17,01)/
1 1.DO,.5DO,.4166666666666666667D0,.37500,
2 .3486111111111111D00, .329861111111111111100,

-3 ... 315591931216931217D0,.304224537037037037O0,
4 .29486800044091710800D,.2869754464285714290 0,
5 .28018959644393672200,.27426554003159905900,
-6 .269028846773648774DO,.26435.1348366606510DO,
7 .260136396127601037D00, 25630949657438915300,
8 .25281214672903923500/
DATA GAM(01,02),GAM(02,02),GAM(03,02),GAM(04,02),GAM(05,02),

GAM(06,02),GAM(07,02),GAM(08,02),GAM(09,02),GAM(10,02),
GAM(11,02),GAM(12,02),GAM(13,02),GAM(14,02),GAM(15 902),

SI GAM(16,02) GAM(17,02)/.
1 .5D0,.166666666666666666670,.125 DO,.105555555555555555600,
2 9.375D-2, . 8.561507936507936510-2,

r 3 7.95717592592592593D-2,7.48522927689594356D-2,
4 7.10329861111111111D-2,6.78584998463470686D-2,
5 6.51646205357142857D-2,6.284031909540342080-2,
6 6.080747929154943870-2,5.900933134607662000-2,
7 5.740349329817826630-2,5.59575975255986825D-2,
8 5.464643933250064670-2/
DATA GAM(O1,03),GAM(02,03),GAM(03,03),.GAM(04,03),GAM(05,03),

.4 GAM(06,03),GAM(07,03),GAM(08,03),GAM(09,03),GAM(10,03),
GAM(11,03),GAM(12,03),GAM(13,03),GAM(14,03),GAM 15,03),

4 GAM(16,03),GAM(17,03)/
1 .166666666666666666666700,4.166666666666666670- 2
2 2.91666666666666667D-2,2.361111111111111110-2,
3 2.033730158730158730-2,1.812996031746031750-2,
4 1.65181327160493827D-2,1.527722663139329810-2,
5 1.42851881914381914D-2,1.346939655316391430-2,
6 1.27836579217097570D-2,1.21970388231238926D-2,
7 1.168796164557332160-2,1.124086633528847550-2,
8 1.08442182943468791D-2,1.048926554478428630-2,
.9 1.016923386114942620-2/
DATA GAM(01,04),GAM(02,04),GAM(03,04),GAM(04,04),GAM(05 ,04),

* GAM(06,04),GAM(07,04),GAM(08,04),GAM(09,04),GAM(10,04),
GAM(11,04),GAMIL2,04),GAM(13,04),GAM(14,04),GAM(15,04),

-* GAM(16,04),GAM(17,04)/
1 4.16666666666666667D-2,8.333333333333333330-3,
2 5.55555555555555555555555556D-3,4.3650793650 7 36508D-3
3 3.6789021 1640211640D-3,3.22365520282186949D-3,
4 2.89544753086419753D-3,2.645435839880284320-3,
5 2.447374914822831490-3,2.2857 5438180524160-3,
6 2.15093669481483635D-3v2.03630871020228384D-3,
7 1.937413011234333020-3,1.851024191060783200-3,

8 1.774763747812964000D-3 1 .70683564605258723D-3
9 1.6458559 105465158D-3/

C GAM(I,J) GIVES THE I-TH ADAMS-FALKNER PREDICTOR

C COEFFICIENT FOR INTEGRATING J-TH ORDER DIFFERENTIAL
C- EQUATIONS, I=1 ,2, KQMAX+1, J=.,2,...,KMAXO.
C

DATA ETA(O1,01),ETA(02,01),ETA(03,01),ETA(049 01),ETA(05,01),
* ETA(06,01)ETA(07,01),ETA(08101),ETA(09201),ETAI10,01),

* .ETA(11,01),ETA(12,01),ETA(13,01),ETA(14,01),ETA(15,01)/-
S. 3.33333330E-01, 2.50000000E-01,

1 1.13636360E-01, 6.73076930E-02, 4.60526330E-02, 3.43749980E-02,

2 2.71381590E-02, 2.22547310E-02, 1.87484580E-02, 1.61123220E-02,

3 1.40603000E-02, 1.24197060E-02, - 1. 10802170E-02, 9;96793590E-03,
4 9.03137260E-03/
DATA ETA(O1,02),ETA(02,02),ETA(03,02),ETA(04,02),ETA(05,02),

ETA(06,02) ,ETA(07,02),ETA(08,02),ETA(09,02),ETA(10,02),
* .ETA(11,02),ETA(12,02),ETA(13,02),ETA[14,02),ETA(15,02)/

S2OOOOOO0000000E-O1 4.00000000E-019

1 3.40909090E-O1, 2.01923080E-O1, 1.38157900E-01, 1.03124990E-01,
2 .8.14144780E-02, 6.67641930E-02, 5.62453730E-02, 4.83369670E-02,

3 4 0 21809010E-02, 3.72591170E-02, 3.32406510E-02, 2.99038080E-02,
-4 2.70941180E-02/
DATA ETA{O1,03),ETA(02,03),ETA(03,03)ETA(04,03) ,ETA(05,03),

ETA(06,03),ETA(07,03),ETA(08,03),ETA(09,03),ETA(10,03),
* . --. ETAI11,03),ETA(12,03),ETA(13,03),ETA(14,03),ETA(15,03)/
SIo1.42857140E-01, 2.85714280E-O01,
1 -3.42857140E-01, 3.46153840E-01, 2.45614040E-01, 1.87500000E-01,

2 1.50303650E-01, 1.24626490E-01, 1.05873640E-01, 9.15858320E-02,
3 8.03445710E-02, 7.12783130E-02, 6.38220510E-02, 5.75925170E-02,

4 5.23196800E-02/
DATA ETA(01,04),ETA(02,04),ETA(03,04)ETA(04,04),ETA(05,04),

* ETA(06,04),ETA(07,04),ETA(08,04),ETA(09,04),ETA(IO,04),
* * ETA(11,04),ETA(12,04),ETA(13,04),ETA(14,04),ETA(15,04)/
* .. 1.11111110E-O1, 2.22222220E-01,

1 2.85714280E-01, 2..53968250E-01, 3.07017540E-01, 2.50000000E-01,
2 2.08755060E-01, 1.78037850E-01, 1.54399060E-01, 1.35682710E-01,

3 1.20516850E-01, 1.07997450E-01, 9.75059080E-02, 8.86038720E-02,
4 8.09709320E-02/
DATA ETA(01,05),ETA(02,05),ETA(03,05-),ETA(04,05),ETA(05,05),

* * ETA(06,05),ETA(07,05),ETA(08,05),ETA(09,05) ,ETA(1O,05),
* ETA(11,05),ETA(12,05),ETA(13,05),ETA(14,05),ETA(15,05)/
f* 9.09090910E-02, 1.81818180E-01,

1 2.42424240E-01, 2.42424240E-01, 1.73160170E-01, 2.50000000E-01,

2 2.27732800E-01,.2.05428290E-01, 1.85278880E-01, 1.67608050E-01,
3 1.52231820E-01, 1.38853860E-01, 1.27181620E-01, 1.16957100E-01,
4 1.07961240E-01/
DATA ETA(01,06),ETA(02,06),ETA(03,06),ETA(04,06),ETA(05,06),

ETA(06,06),ETA(07,06),ETA(08,06),ETA(09,06),ETA(10,06),
* ETA(1,06),ETA(12,06),ETA(13,06),ETA(14,06),ETA(15,06)/

7.69230760E-02, 1.53846150E-01,
1 2.09790210E-01, 2.23776220E-01, 1.86480190E-01, 1.11888110E-01,
2 1.91295550E-01, 1.91733070E-01, 1.85278880E-01, 1.75988460E-01,
3 1.65763530E-01, 1.55516330E-01, 1.45680770E-01, 1.36449950E-01,
4 1.27892540E-01/
DATA ETA(01,07),ETA(02,07),ETA(03,07),ETA(04,07),ETA(05,07),

ETA(06,07),ETA(07,07) ,ETA(08,07),ETA(09,07),ETA(10,07),
ETA(11,07),ETA(12,07),ETA(13,07),ETA(14,07),ETA(15,07)/

6.66666660E-02, 1.33333330E-01,

1 .1.84615380E-01, 2.05128200E-01, 1.86480190E-O1, 1.34265730E-01,
2 6.96192690E-02, 1.39442230E-01, 1.52023690E-01, 1.56434190E-01,

3 1.56012730E-01, 1.52787970E-01, 1.47993160E-O1, L.42382550E-01,
4 1 036418720E-01/
DATA ETA(O1,08),ETA(02,08),ETA(03,08),ETA(04,08),ETA(05,08),

ETA(06,081,ETA(07,08),ET(8TA),ETA(9,08),ETA(10,08)
SETA(11,08),ETA(12,08),ETA(13,08),ETA(14,O8),ETA(15,08)/

5.88235290E-02, 1.17647060E-01,

1 1.64705880E-01, 1.88235290E-01, 1.80995470E-01, 1.44796380E-01,

2 9.21431500E-02, 4.21225830E-02, 9.772S5190E-02, 1.14931240E-01 9

3 1.25367380E-01, 1.30961120E-01, 1.33193850E-01, 1.33136920E-01,
4 1. 31546610E-O1/
DATA ETA(01,09),ETA(02,09),ETA(03,09)ETA 04,09),ETA(05,09),

* ETA(06,09),ETA(07,09),ETA(08,09) ,ETA(09,09),ETA(10,09),
* ETA(11,290909 TA(12,09)ETA(13,09),ETA(14,09),ETA(15,09)/

5.26315790E-02, 1.05263160E-01,

1 1.48606810E-01, 1.73374610E-01, 1.73374610E-01, 1.48606810E-01,

2 1.06692070E-01, 6.09668970E-02, 2.49410030E-02, 6.63064840E-02,

3 8.35782530E-02, 9.62949390E-02, 1.05153040E-01, 1.10947430E-01,
4 1.14388350E-01/
DATA ETA(01,10) ,ETA(02,10),ETA(03,,10),ETA[04,10),ETA(05,10),

* . ETA(06,10),ETA(07,10),ETA(08,10) ETA(09,10),ETA(10,10),
* * ETA(11,10) ETA(12,10),ETA(13,10),ETA(14,10),ETA(15,10)/

* * 4.76190480E-02, 9.52380950E-02,
-1 1.35338350E-01, 1.60401000E-01, 1.65118680E-01,'1.48606810E-O1,
2 1.15583080E-01, 7.54828240E-02, 3.91930050E-02, 1.45159280E-02,
3 4.37790860E-02, 5.88469080E-02, 7.14002090E-02, 8.13614340E-02, -

4 8.89687070E-02/
DATA ETA(01,11) ,ETA(02,11),ETA(0311),ETA(04,11,i ETA(05,11),

* ETA(06,i1),ETA(07,11),ETA(08,11),ETA(09,11),ETA(10,11),
* aETA(11,11),ETA(12,11),ETA(13,11),ETA(14,11),ETA(15,11)/
* 4.34782610E-02, 8.69565210E-02,

1 1.24223600E-01, 1.49068320E-01, 1.56914020E-01, 1.46453090E-01,
2 1.20608430E-01, 8.61488760E-02, 5.16813250E-02, 2.46139640E-02,

3 8.33088030E-03, 2.82465160E-02, 4.03201180E-02, 5.13861540E-02,
4 6.10071000E-02/
DATA ETA(01,12),ETA(02,12),ETA(03,12),ETA(04,12) ,ETA(05,12) ,

* ETA(06,12),ETA(07,12),ETA(O8,12),ETA(09,12),ETA(10,12),
. .. ET-A(11,12).,ETA.(.2,.12 ,ETA(13,12),ETA(14,12),ETA 15,12)/.

4. O0000000E-02, 7.99999990E-02,
1 -1.14782610E-01, 1.39130430E-01, 1.49068320E-01, 1.43105590E-01,
2 1.23020590E-O1, 9.37299770E-02, 6.20271900E-02, 3.44595500E-02,

3 1.51622020E-02, 4.72588120E-03, 1.78691420E-02, 2.69906870E-02,
4 3.60496320E-02/
DATA ETA(O1,13),ETA(02,13),ETA(03,13),ETA(04,13),ETA(05,13),

* ETA(06,13),ETA(07,13),ETA(08,13),ETA(09,13),ETA(10,13),
ETA(II,13),ETA(12,13),ETA(13,13),ETA(14,13),ETAM 15,13)/

S * 3.70370370E-02, 7.40740740E-02,

1 1.06666670E-01, 1.30370370E-01, 1.41706920E-01, 1.39130430E-01,
2 1.23671500E-01, 9.89371980E-02, 7.02974820E-02, 4.33935080E-02,
3 2.24625220E-02, 9.18921340E-03, 2.65466170E-03, 1.11137880E-02,

4 1.77085690E-02/
DATA ETA(O1,14),ETA(02,14),ETA(03,14),ETA(04,14),ETA(05,14),

ETA(06,14),ETA(07,14),ETA(08,14),ETA(09,14),ETA(10,14),
* ETA(11 ,14),ETA(12,14),ETA(13,14),ETA(14,14),ETA(15,14)/

3.44827580E-02, 6.8965517CE-02,
1 9.96168580E-02,. 1.22605360E-01,. 1.34865900E-01, 1.34865900E-01,
2 1.23138430E-01, 1.02348820E-01, 7.67616190E-02, 5.11744120E-02,
3 .2.96272910E-02, 1.43647470E-02, 5.49240340E-03, 1.47872400E-03,
4 6.81096220E-03/
DATA ETA(01,15),ETA(02,15),ETA(03,15),ETA(04,15),ETA(05,15),

* ETA(06,15) ETA(07,15),ETA(08,15),ETA(09,15),ETA(10,15),

ETA(lv15),ETA(12,15),ETA(13,15),ETA(14,15),ETA(15,15)/
* 3.22580640E-02, 6.45161290E-02,
I 9.34371530E-02, 1.15684090E-01, 1.28537880E-01, 1.30515390E-01,
2 10 21814360E-0i, 1.04412310E-01, 8.17139820E-02, 5.77775630E-02,

3 ,.63173250E-02, 1..98094500E-02, 9.03588950E-03, 3.24365270E-03,
4 8.17727570E-04/

C ETA(I,J) I=1,2,...,J IS USED IN THE FIRST MODIFICATION OF THE

C I-TH DIFFERENCE OF A J-TH ORDER-METHOD AFTER THE STEPSIZE IS
C HALVED.
C ETA(I,J) J=1,2,...,I-1 IS USED IN THE SECOND MODIFICATION OF

C THE (J+1)-ST DIFFERENCE OF AN I-TH ORDER METHODS-
C T-iE TWO MODIFICATIONS OF THE DIFFERENCE TABLE AFTER HALVING THE

C - STEPSIZ:E REMOVES' MOST OF THE INSTABILITY INHERENT IN THE METHOD.
C-. . -USED HERE FOR-.HALVI.NG THE STEPSIZE........
C

C .IF THE GSTOP FEATURE IS ELIMINATED, REMOVE THE FOLLOWING CARD.
DATA LGSS,LGSD,LGSE/,O0,O/

C
C INITIALIZE

KSTEP=-1-
NE=NEQ
IF (NE.LE.O) GO TO 1190
HH=H
NV=O
KDMAX=O .
KDD=KD(1)
KDS=KDD
DO 10 I=1,NE

T KQ(I)=1
. DT(1,I)=O.DO

IF (KDSoLE.O) KDD=IABS(KD(.I))
IF ((KDD.EQ.O).OR.(KDD.GT.KMAXO)) HH=O.DO

: . .IF (KDD.GT.KDMAX.).K-DMAX=KDD..

10 NV=NV+KDD
C

IF ((DELT*HH).LE.O.DO) GO TO. 1190
ERRMX=P-
EMAX=ERND
RNDC=RND*P25
LDOUB=O
E2HFAC=P25
LSC=8
LSTC=4

C LSC AND LSTC ARE .US.ED IN. COMBINATION AS FOLLOWS

C LSTC=4, LSC=4 FIRST TIME THROUGH THE FIRST STEP

C LSTC=3, LSC=4. SECOND TIME THROUGH THE FIRST STEP

C (NECESSARY TO CHECK STABILITY)

C LSTC=2, LSC=4 THIRD TIME THROUGH THE. FIRST STEP

C { . (ONLY OCCURS IF INSTABILITY POSSIBLE)

C LSTC=2, LSC=2 SECOND STEP (IF KQ(I)=2 , I=1,...,NEQ)
C LSTC=1, LSC=O STARTING, ONE DERIVATIVE EVAL. PER STEP.

.C - .LSTC=1, LSC.GT.0 SET WHEN STARTING. TWO DERIV. EVAL. PER STEP

C LSTC=-I LSC.LT.O0 SET WHEN HALVING THE STEPSIZE
C -IN THE LAST TWO CASES LSC IS SET EQUAL TO LSTC*(MAXIMUM KQ(I)

C +1). AT THE END OF EACH STEP IF LSC.NE.O IT IS REPLACED BY
C LSC-LSTC UNTIL LSC=O, AT WHICH TIME LSTC IS SET EQUAL TO 0.

C WHEN DOUBLING H, LSTC IS SET EQUAL TO -1 AND LSC TO -3.
C UNDER CERTAIN CONDITIONS WHEN KQ(I)=1, LSTC IS SET =-1 AND LSC=-5
C

KSOUT=MXSTEP
TOUT=T
IFL=13

20 IFLAG=1
GO TO 315

C. END OF INITIALIZATION
.C
.C

ENTRY DVDQ1

SC.
.C
C TO OUTPUT VARIABLES IN THE CALLING SEQUENCE REMOVE THE C-S

C .IN COLUMN ONE. OF .TH.E-FOLLOWING CARDS UNTIL REACHING THE COMMENT

C END OF CODE FOR PRINTING VARIABLES IN CALLING SEQUENCE.

C IF (NEQ.NE.O) GO TO 28

.C NEQ=1
*C 22 WRITE(6,5000) T,DELT,HMINA,HMAXAKEMAX,EMAXI9FLAGTFINALMXSTEP

C5000 FORMAT3HOT=1PD24.1 7,7H DELT=D12.5,8H HMINA=,E1O.3,8H HMAXA=,

C 1 E10.3,8H KEMAX=,I2,7H EMAX=E10.3,8H IFLAG=,I2/

C- 2 9H I KQ KD,7X,4HF(I),9X,1HJ,12X,4HY(J),22X,5HYN(J),
C. 3 10X,7HTFINAL=1PDI5.8,9H MXSTEP=I4)

.C - J=l
.C DO 24 I=1,NE
C IF. KDS.LT.O) KDD=IABS(KD(1))

.C - K=KDD
C WRIT E(6,5001) IKQI I)bKDD,F(I),J,Y(J),YN(J)

C5001 FORMAT(1H ,IZ,213,1PD17.8,14,2026.17)

. C 23 J=J+1

.C K=K-1
C IF (K.EQ.0) GO TO 24

"C WRITE(6,5002) J,Y(J)YN(J)

C5002 FORMAT(26X,14,1P2D26.17)
C GO TO 23
'C- 24 CONTINUE
C WRITE 6,5003)
C5003 FORMAT(3HO I,15X,16HDIFFERENCE TABLE)

C DO 27 I=1,NE
.C. KQQ=KQ(I)+1
C K=MINO(KQQ,7)
.C WRITE(6,5004) I,(DT(IjI),IO1,), ,K)

.C5004 FORMAT(IH , 12,1PD19..8,6016.7)

.C IF (K.EQ.KQQ) GO TO 27

C K=K+I
C WRITE(6,5005) (DT(10,1),IO=K,KQQ).

05005 FORMAT(1H , I1PD21.5,7D14.5)

C 27 CONTINUE
C IF (NEQ.EQ.0) RETURN

C NEQ=0O
C 28 CONTINUE
C END OF CODE FOR PRINTING VARIABLES IN CALLING SEQUENCE.

C-
IF (2-IFL) 30,60,320

30 IF (IFL.GT.5) GO TO 1180

C
.C SET STEP STOP

KSOUT=KSTEP+MXSTEP
IF (IFL-4) 40,1210,210

C
C

C SET PRINT STOP
40 TOUT=T+DELT

C
50 TPS1=ABS(SNGL(DMOD((TOUT-T)/HH,2.DO))-PTS1)

LFD=-1
IF (TPSI.GE.P5) LFD=1

C
C LFD IS USED TO INDICATE WHETHER.DOUBLING H IS PERMITTED.

C-_ IF LFD.LTO.0 AT THE END OF A STEP THEN.DOUBLING H IS

C NOT PERMITTED. THE -SIGN OF LFD IS CHANGED JUST BEFORE THE

C END OF EACH STEP. IF DELT#H*%POWER OF 2< THEN
C OUTPUT VALUES WILL BE OBTAINED WITHOUT INTERPOLATION.

-C
GO'TO 200

C
C

C ENTRY WITH IFLAG=2
C
C UPDATE DIFFERENCE TABLE
C AND COMPUTE KQM=MAXIMUM VALUE OF KQ(I), I=1,2,...,NEQ.
C

60 KQM=O
DO 80 I=1pNE
KQQ=KQ(I)
IF (KQQ.GT.KQM) KQM=KQQ
D(1)=F(I)
DO 70 K=1,KQQ
D(K+1)=D(K)-DT(K,I).

70 DT(K,I)=D(K)
DT(KQQ+1,I)=D(KQQ+I)

80 CONTINUE
C END OF UPDATING DIFFERENCE TABLE
C
C STORE Y(J) IN YN(J)

DO 90 J=1,NV
90 YN(J)=Y(J)

C
LFD=-LFD
TL=T
KSTEP=KSTEP+1

C
C IF THE GSTOP FEATURE IS ELIMINATED, REMOVE THE 2 FOLLOWING CARDS.

IF (LGSS) 1430,110,1510
100 IFLAG=2
110 IF (LSC.EQ.0) GO TO 140

LSC=LSC-LSTC
IF (LSC.EQ.O) GO TO 130
IF (LSTC.NE.(-1) GO TO 140
IF (LDOUB.LT.0).RNDC=RND*PI

120 E2HAVE=E2HMAX
TPS1=PTSI
GO TO 190

130 IF (ABS(SNGL(HH)).LT.HMINA) GO TO 1000
LST C=.O

140 IF (LDOUB.NE.1) GO TO 150
IF ((LFD.GT.O).AND.(ABS(SNGL(HH+HH)).LE.HMAXA)) GO TO 1030

GO TO 200
150 RQMA X=PT S1/FLOAT (KQM+3)

IF (LSTC.NE.0) GO TO 120
TPSI=E2HMAX/E2HAVE

bib

IF (TPSI-PTSI) 160, 190,170
160 E2HFAC=AMAXI(o075E0,E2HFAC-RQMAX,E2HFAC*TPS1)

GO TO 180
170 TPSl=TPSI*TPSI

E2HFAC=AMIN1(PTS ,E2HFAC*TPS1)
180 RNDC=(1.1-E2HFAC)*RND

E2HAVE=P5*(E2HMAX+E2HAVE)
.190 ERRMX=AMAXI(PL,ERRMX-RQMAX*TPS1)

C - E2HFAC IS A FACTOR .WHICH IS-TAKEN TIMES AN INITIAL ESTIMATE OF

C E2H TO GET A FINAL VALUE OF E2H. (E2H=ESTIMATE OF WHAT

C (ESTIMATED ERROR)/(REQUESTED ERROR) WOULD BE IF H WERE

C DOUBLED.),
C E2HMAX .IS THE MAXIMUM VALUE OF THE INITIAL ESTIMATE OF E2H OVER.,
C . -.. ALL -COMPONENT.S W ITH KQO I }.GT. 1.

C.. E2HAVE IS A WEIGHTED AVERAGE OF PAST VALUES OF E2HMAX.

C THE VALUE OF E2HFAC TENDS TO BE SMALLER WHEN E2HMAX IS

C CONSISTANTLY SMALLER THAN E2HAVE.
C

.C CHECK FOR PRINT STOP AND FOR T REACHING TFINAL
200 TPD=(TOUT-TL)/HH

TPD1=(TFINAL-TL)/HH
.C
C IF THE GSTOP FEATURE IS ELIMINATEDy REMOVE THE FOLLOWING CARD.

IF (LGSE.LT 0O) GO TO 1780
IF (TPD1.LT.FAC{1)) GO TO 1220
IF (TPD.LE.O.DO). Gb TO 1280

.C

.C CHECK FOR STEP STOP
IF (KSOUT.GT.KSTEP) GO TO 210

IFL=5.
GO TO 310

C CHECK TO .SEE IF ROU.ND-OFF ERROR IS PROMINENT

210 IF (EMAX.EQ.ERND) GO TO 220
.C IT IS

IFL=6
IF.(EMAX.GE.Pl) .GO TO 310
IF ((LSTC.GE.0).OR. (LDOUB.EQ.I)) ERRMX=PTSL

C
220 IFL=1

-230 T=TL+HH
C
C START A NEW STEP
C
C PREDICT

240 J=O
DO 290 T=1,NE
IF (KDS.LE.0) KDD=IABS(KD(I))
KDC=KDD

250 KQQ=KQ(I)
TPD=O.DO
K=KDC

260 TPD=TPD+DT(KQQ,I)*GAM(KQQtKDC)
KQQ=KQQ-1
IF (KQQ.GT.0) GO TO 260

270 K=K-1
IF (K.LE.0) GO.TO 280
L=J+K

TPD=YN(L+1-) *FAC(K)+HH*TPD
GO TO 270

280 J=J+L
Y([J)=YN(J)+HH*TPD
KDC=KDC-1
IF (KDC.GT.O) GO TO 250

290 CONTINUE
C END OF PREDICT
C
C IF THE GSTOP FEATURE IS ELIMINATED, REMOVE THE C IN COLUMN ONE

C OF THE 2 FOLLCWING CARDS
C. IF (IFL) 20,320,300
C 300 CONTINUE
C AND THEN REMOVE THE 2 FOLLOWING..CARDS. ..

.IF. (I.FL) .1240 ,320.,3-00
.... 300 IF (LGSD.NEO).-GO..TO 1520
C

310 IFLAG=IFL
315 CONTINUE

C
C TO OUTPUT VARIABLES IN THE CALLING SEQUENCE REMOVE THE C IN

C COLUMN ONE OF THE FOLLOWING CARD.
.C IF (NEQ.EQ.O) GO TO 22
C

RETURN

C
C
C. ENTRY WITH IFLAG=1

320 EPS=EP(1)
ERND=O.
EMAX=O.
E2F!MAX=0.O .
J=0
IF -(LDOUB.GE.0) LDOUB=-1

C LDOUB IS SET IN THE LOOP BELOW AS FOLLOWS
C - .DOU8=0 HALVE
C LDOUB=1 DOUBLE
C LDOUB=2 - DO NOT DOUBLE
C
C LDOUB,LT.0 AT THE BEGINNING OF THE LOOP INDICATES THE FOLLOWING

C =-3 STEPSIZE HAS JUST BEEN HALVED. IF A DISCONTINUITY IS

C NOT INDICATED MODIFY THE DIFFERENCE TABLE AND REPEAT

C THE STEP.
C =-2 STEP AFTER LDOUB=-3. PROCEED AS USUAL (ORDER IS NOT

C . CHANGED)
C =-1 STEP AFTER LDOUB=-2. MODIFY THE DIFFERENCE TABLE ONCE

C AGAIN AND REPEAT THE STEP.

C * IF LDOUB IS SET EQUAL TO -4 THE ORDER IN AT LEAST ONE COMPONENT

C HAS BEEN GREATLY REDUCED AND THE STEP IS REPEATED.
C
C

.. C IF THE OUTPUT OPTION IS ELIMINATED, REMOVE THE 4:.FOLLOWING .CARDS.
..IF .(.NEQ. LE.O)..WRITE .(6,.5020)..LSC,.LFDLSTCKSTEPtE2HFAC,.ERRMX,HH

-5020 FORMAT (19HO I KQQ LRND LDOUB,5X,1HE,9X,3HE2H,

1 8X,3HEPS,3X,4HLSC=,13,6H LFD=,12,7H LSTC=,12,8H KSTEP=,14,

.2- 9H E2HFAC=,F4.2,8H ERRMX=,F4.2,4H H=,IPD9.2)

C
-C

C BEGINNING OF LOOP FOR CORRECTING, ESTIMATING THE ERROR,

C AND ADJUSTING THE NUMBER OF DIFFERENCES USED
.C

DO 790 I=1,NE
IF (KOS-LE.O) KDD=IABS(KD(I))
KQQ=KQ(I)

C KQQ GIVES THE ORDER OF THE PREDICTOR FORMULA AND KQQ+1 THE
C ORDER OF THE CORRECTOR FORMULA.
C

KQ1=KQQ+
D(1)=F(I)

C FORM THE DIFFERENCE TABLE FROM PREDICTED DERIVATIVE VALUES.
DO 330 K=I,KQI
D(K+1)=D(K)-DT(KI)- -. -.::.

....330 -CONTINUE..
C ... D(K) GIVES THE (K-1)-ST DIFFERENCE FORMED FROM PREDICTED
C DERIVATIVE VALUES

TPS3=ABS(SNGL(D(KQQ+1)))
IF (LDOUB.LT.0) GO TO 720

340 IF (KQQ.NE.1) GO TO 520
C
.C KQ(I)=i IS TREATED AS A SPECIAL CASE

E2H=PTS2
TPS5=DT(3,1)
IF (LSTC.LT.2) GO TO 370.

C FIRST STEP OF INTEGRATION
IF (LSTC.NE.4) GO TO 350
TPS4=0.

IF (KDD.GT.1) TPS3=AMAXI(TPS3,ABS(SNGL(HH*D())) ..,.....
... TPS3 T PS3*P
GO TO.510

350 DT(.2,I)=D(2)
D(2)=D(I)-DT(5, 1
TPS2=-D(2)
TPS3=PTS5*ABS(TPS2).

C FIRST STEP THAT KQ(I)=1

360 DT(7,I)=PT(4)
IF (LSTC-2) 420,380,380

370 IF (TPS5.EQ.O.) GO TO 360
IF (DT(6,I).EQ.O.DO) GO TO 400
TPS2=DT(5,1)-DT(1,I

380 TPS4=DT(4,I)
TPSI=ABS(TPS4)
TPS4=TPS2*SIGN(PTS2,TPS4)-TPS5*TPS1
IF (TPS4.GT.(-TPS1)) GO -TO 410

390 TPS6=-PTSI
GO TO 450

C FIRST STEP AFTER THE STEPSIZE HAS BEEN CHANGED

400 DT(6,1)=PT(1)
TPS6=O .
GO TO 450

410 IF (TPS4.LT.TPS1) GO TO 440
IF (TPSI.EO.0) GO TO 390

420 TPS6=PTS1
GO TO 450

430 KQ(I)=2
IF (2-LSTC) 510,510,520

440 TPS6=TPS4/TPSI1
450 TPS4=TPS5+TPS6

IF (TPS4.LT.P25) GO TO 430

- ~ ~r -~"- ~~r-- --W

C INCREASE E2H IF (-S).GT..25
E2H=PTS4*TPS4
IF (2-LSTC) 460,470,480

460 LSC=O
GO TO 510

470 IF (TPS5-P25) 430,460,460
480 IF (TPS4.GT.PTS2) GO TO 490

IF (TPS4.GT.P5) .D(2)=D(2)*GAM(2,1)
GO TO 510

490 IF (TPS4.LT.PTS4)..GO TO 500
TPS4=PTS4
D(2)=D(2)/PT(3)

C THE ESTIMATE CF .E (AND HENCE OF E2H) IS INCREASED IF (-S).GE.8.

TPS3-TP.S3*SNGL (DT(7,I.)..) ...

GO TO 510
500 D(2)=D(2)*DBLE(PTS2*(TPS4-PTS1)/(TPS4*TPS4))

IF .(TPS4.GE.P3EI) E2H=E2H*SNGL(DT(7,I))
C STORE D(1)=PREDICTED DERIVATIVE AND D(2)=2*(CORRECTED Y -
C PREDICTED Y)/H D(1) AND D(2) ARE USED TO CO-MPUTE (-S) ON

C THE NEXT STEP.
510 DT(5,I)=D(1)

DT(4,I)=D(2)
D(4)=TPS4

C. STDRE.D(4)= CURRENT ESTIMATE OF (-S). (-S).GT.3 IS AN INDICATION
C THAT THE STEPSIZE SHOULD BE LIMITED BECAUSE OF STABILITY PROBLEMS.
C S=H*(ESTIMATE OF EIGENVALUE OF F)=H*(DIFFERENCE BETWEEN PREDICTED
C AND CORRECTED DERIVATIVE VALUES)/(DIFFERENCE BETWEEN PREDICTED

C AND CORRECTED INTEGRALS OF THE DERIVATIVE VALUES)
C .THE TREATMENT OF THE CASE KQ(I)=1 COULD BE IMPROVED BY USING A
C SPECIAL METHOD.FOR STIFF EQUATIONS WHE.N (-S)..GT.3 (MAYBE).
-C (THE ENTIRE TREATMENT OF THE CASE KQ(I)=1 IS FAR FROM IDEAL.)

S . DT(3,1)=D(4)
C

. C - CORRECT

520 KDC=0.
TPD=D(KQ1)
J=J+KDD
K=J

530 T-PD=HH*TPD
KDC=KDC+1
Y(K)=Y(K)+GAM(KQQ+1,KDC)*TPD
K=K-1
IF (KDC.LT.KDD) GO TO 530

C END OF CORRECT
C

IF (EPS) 540,550,560
540 EPS=EP(I)

IF (EPS.NE.O,.) GO TO 560
550 IF (HMAXA) 1190,780,1190
560 TPS4=ABS(SNGL(D(KQQ+2)))

TPS2=ABS(SNGL(D(KQQ)))
TPS6=SNGL(HH)/EPS

-- C
E=ABS(SNGL(GAS(KQQ+L))*TPS3*TPS6)

C E GIVES AB S((ESTIMATED ERROR)/EPS)
C

LRND=1
C

.C LRND= 1 MEANS NO ROUND-OFF ERROR
C = 0 MEANS SOME-ROUND-OFF ERROR

C =-1 MEANS EXTREME ROUND-OFF ERROR
-C

FRND=RNDC*ABS(SNGL (PT[KQQ+2)* D(1)))
C CHECK TO SEE IF ROUND OFF ERROR IS DOMINANT

IF .((TPS3+TPS4.)-GT.FRND) GO.TO 570.
LRND=O
IF ((PTS4*TPS2)..LT.FRND) LRND=-1

C
570 IF (E.LE.ERND) GO TO 590

IF (E.LE.EMAX) GO TO 580
EMAX=E
KEMAX=I

580 IF (LRND°LE.O) GO TO 590
ERND=E
IF .(ERNDoGT.ERRMX) LDOUB=O

590 IF (LDOUB.LE.0) GO TO 780
TPSI=ABS(SNGL(DD(KQQ))).
TPSS=TPSI
IF (KQQ-2) 600,610,620

- 600 E2H=E*E2H
IF (E2H.LT.POl) GO TO 780
IF (SNGL(D(4J).LT.P3E1) GO TO 770
LSTC=-1
LSC=-5
GO- TO 770.

610 TPS1=TPS2
IF (LSTC.NE.2) GO TO 620
KQ(I)=3
TPS2=0.
TPS4=0.
LRND=O0

620 E2H=TPS2TPS3+TPS4
E2H=ABS(SNGLIGAS(KQQ-1)*PT(KQQ+1))*E2H*TPS6)

-C E2H IS USED AS AN ESTIMATE OF WHAT THE VALUE OF E WOULD BE
.C IF H WERE DOUBLED. THE ESTIMATE IS CONSERVATIVELY LARGE.

IF (E2H.GT.E2HMAX) E2HMAX=E2H
C

IF (LRND) 630,640,660
C EXTREME ROUND-OFF ERROR--REDUCE E2H
.630 K=(KBIT2/KQQ)-4

IF (K.LE.3) GO TO 640
IF. (K.GT.KQMAX) K=KQMAX
E2H=E2H/PT(K+1)
GO TO 650

640 E2H=AMIN1(E2H,E2H*P3EI*E2HFAC)
650 E2H=E2H*P1

TPS6=PTS4
GD TO 670

660 E2H=E2H*E2HFAC
TPS6=FLOAT(KQQ+2)

C -. TEST TO SEE IF -DIF.FERENCES DECREASE MORE RAPIDLY THAN. NECESSARY
-- C

670 IF (TPS5.LT.(TPS3*TPS6)) GO TO 680
IF (TPS2.LE.(TPS44TPS6)) GO TO 760

C THEY DO INCREASE KQ(I)
IF (KQQ.NE.KQMAX) KQ(I)=KQL.
GO TO 760

C
C TEST TO SEE IF DIFFERENCES DECREASE TOO SLOWLY

680 TPS6=TPS64*.P25
IF ((TPS1.GT.(TPS34TPS6)).OR.(TPS2.GT.(TPS4*TPS6))) GO TO 760

C THEY DO
IF (LSTC.LE.0) GO TO 750
IF (E2H.LT.PO1) GO TO 750
IF (LSC-LSTC) 690,750,770

690 IF (KSTEP-4) 750,700,710
700 KQ1=LSTC
710 LSC=KQI

C END OF ONE DERIVATIVE EVALUATION PER STEP
...... GO TO 770
C.
C AFTER HALVING H. REDUCE KQ(I) IF A DISCONTINUITY HAS OCCURRED.

720 IF (LDDUB.EQ.(-2)) GO TO 340
DT(KQQ+I,I)=D(KQQ+1)
IF (LDOUB.EQ.(-I)) .DT(KQQ+1,I)=D(KQQ+2)
K=KQQ

730 IF .(K.EQ.1) GO TO 7.40
IF. ((DABS(D(K-1)).GT. (PT(2)*DABSD(K+1.)))).OR.

I (DABS(D(K)).GT.(PT(2)*DABS(D(K+2))))) GO TO 740
K=K-1
GO TO 730

740 IF ((K+K).GE.KQQ) GO TO 780
LDOUB=-4
E2H=O.

KQQ=K+1
C
C
C DIFFERENCES DECREASE TOO SLOWLY REDUCE KQ[(I.

750 KQ(I)=KQQ-1
. IF .(KQQ.EQ.2) DT.(3,I)=0.DO ..

760 IF "(E2H.LT.PO1) GO TO 780
770 LDOUB=2
780 CONTINUE

C .

C IF THE OUTPUT OPTION IS ELIMINATED, REPOVE THE 6 FOLLOWING CARDS.
IF (NEQ.GT.0) GO TO 790
102=MAXO(1, (KQQ-1))
I03= 1.02+3
WRITE (6,5021) I,KQQ, LRND,LDOUB,E,E2H,EPS,

1 (IO1,D.(I01),101=102,103)
5021 FORMAT (IH 12,14,215,1PE13.3,2E11.3,4(3H (,12,1H),D10.3))

C-
790 CONTINUE

C
.C END OF LOOP FOR CORRECTING, ESTIMATING THE ERROR, ETC.

C
C

.C IF THE INTERPOLATION CAPABILITY IS ELIMINATED REMOVE THE

SC FOLLOWING CARD. ...
.. F (IFL .LT..).. GO..TO .1250

C..-.. . TEST -FOR..HALVING--H .
IF (LDOUB) 80C,950,870

800 LDOUB=LDOUB+1
IF (LDOUB+1) 810,870,820

810 IF (LDOUB.EQ.(-2)) GO TO 820
C ORDER IN AT LEAST ONE COMPONENT HAS BEEN GREATLY REDUCED

LDOUB=O
GO TO 220

820 DO 860 I=1,NE

KQQ=KQ(I)
TP=DT(KQQ+1,I)
IF (KQQ.LE.3) GO TO 860
IF (LDOUB.NE.O) GO TO 840
DO 830 K=3,KQQ

C SECOND MODIFICATION OF DIFFERENCE TABLE AFTER HALVING H
830 DT(K,I)=DT(K,I)+ETA(KQQ-1,K-2)*TP

GO TO 860
840 DO 850 K=2,KQQ

C FIRST MODIFICATION OF DIFFERENCE TABLE AFTER HALVING H
850 DTIKI)=DT(KI)+ETA(K-1,KQQ-1)*TP

. 860 CONTINUE ..
•* IFL=

GO TO 240
C

870. IFL=2
IF (LSTC.LE.0) GO TO 300
IF (2-LSTC) 880,900,940

880 LSTC=LSTC-1
IF (LSTC.EQ.3) GO TO 890
IF (LSC) 920,9609920

890 IFL=1
GO TO 300

900 IF (LSC-2) 9109930,920
910 LSTC=O
920 LDOUB=2

GO TO 60
*.930 LSTC=1

LSC=O
GO TO 60

940 IF (LSC) 300,60,300
C .
C HALVE H
S950 HH=FAC(2)*HH

IF (LSTC.LT.2) GO TO 990
ERND=P25'ERND

C IN LOOP TO FIND A NEW INITIAL STEPSIZE
IF (ERND.GE.Pl) GO TO 950
LSTC=4

960 LSC=4
DO 970 I=1,NE

970 KQ(I)=1
IF (LSTC-3) 890,890,1170

C
C ENTRY AFTER IFLAG=7

980 IF (LDOUB.EQ.0) GO -TO 990
LSC=1
LSTC=1
GO TO 140

-C TEST TO SEE IF H IS TOO SMALL FOR HALVING

990 IF (ABS(SNGL(HH)).GE.HMINA) GO TO 1040
IF (IFL.EQ.7) GO TO 1010

1000 IFL=7
GO TO 1020

C
1010 HH=HH+HH

IFL=2
1020 H=HH

GO TO 310
C

C
-C ERROR CRITERIA PERMIT DOUBLING
.1030 HH=HH+HH

IF (LSTCEQ.I1) GO TO 1050

LSC=-3
1040 LSTC=-1

C
C - CHANGE THE STEPSIZE
1050 DO 1160 I=1,NE

KQQ=KQ(I)
IF (KQQ.NE.1) GO TO 1070
DT(6,I)=0.DO
S D(3)=DT(391)*PT(2)
IF (D(3).GT.PT(3)) LSC=-6
IF.(LDOUB.NE.0) GD TO 1060
KQM=8
IF .(D(3).GE.PT(5)) .DT(7,.I)=DT(7,I)*PT(2)
D3)=D(3)/PT(31...

-1050 DT(3, I)=D (3)
GO TO 1160

C
C BEGINNING OF LOOP FOR CHANGING DIFFERENCE TABLE TO

C CORRESPOND TO NEW VALUE OF H

1070 DO 1080 K=1,KQQ
D(K)=DT(KI)/PT(K)

.1080 IF (LDUB.EQ.0) DIK)=D(K)/PT(K)
KQQ2=KQQ-2
IF (KQQ2) 1160,1140,1090

-1090 DO 1130 J=1 ,KQQ2.
IF (LDOUB.NE.0) GO TO 1110

"C

C HALVE
K=KQQ

1100 D(K-1)=D(K-1)+D(K)
K=K-1
IF (K+J-KQQ) 1130,1130,1100

C
C DOUBLE

1110 DO 1120 K=J,KQQ2
.1120 D(K+1)=D(K+1)-D(K+2)
1130 CONTINUE

C
.1140 DO 1150 K=2,KQQ

IF (LDOUB.NE.O) D(K)=D(K)*PT(K)
DT K,I)=D(K)*PT(K)

1150 CONTINUE
C DIFFERENCE TABLE NOW CORRESPONDS TO NEW VALUE OF H

C,
1160 CONTINUE
1170 H=HH

IF (LDOUB.NE.0) GO TO 50
LFD=l
IF (LSTC.GE.O) GO TO 220
LDOUB=-3
LSC=LSTC-KQM
GO TO 220

C END OF CHANGING STEPSIZE
C
C THE STOP FEATURE IS ELIMINATED REMOVE THE C IN COLUMN ONE
C IF THE GSTOP FEATURE IS ELIMINATED, REMOVE THE C IN COLUMN ONE

C OF THE 2 FOLLCWING CARDS
-C1180 IF (7-IFL) 1181,980,220
C1181 IF (IFL-8) 60,1200,60
C AND THEN REMOVE THE 2 FOLLOWING CARDS.
1180 K=IFL-5

GO TO (220,980,1200,1570,1570,1720,1720,60,1480,1450,1630,1570), K
C
C ILLEGAL VALUE OF PARAMETER -INTEGRATION CAN NOT PROCEED

1190 .-IFL=8

GO TO 310
1200 WlITE (6,4000)
4000 FORMAT (26HOIFLAG=8 IN CALL TO DVDQl.)

STOP
C
C
1210 IF (T-TFINAL) 200,1190,200

C.
C IF ONE DOES NOT WANT THE INTERPOLATICN FEATURE, REMOVE ALL CARDS

.C-_.. BELOW.THIS POINT -(EXC.EPT FOR...THE END STATEMENT), AND ADD THE
C- FIVE FOLLOWING STATEMENTS.
C1220 IFL=4
C . IF (TPD1-.GT.TPD) GO TO 1280
C GO TO 310
C1280 IFL=3
C.- GO TO 310

.C

1220 IFL=4
IF (KSTEP.NE.O) GO TO 1270
TPD2=TPD

C ESTIMATE ERROR WHEN EXTRAPOLATION. FROM INITIAL POINT IS REQUESTED
1230 HH=HH-TPDI~.75DO.

C
..C IF THE GSTOP FEATURE IS ELIMINATED, REMOVE THE FOLLOWING CARD.

IFLS=IFL
IFL=-l
GO TO 230

.C: IF THE GSTOP FEATURE IS ELIMINATED, REMOVE THE 4 FOLLOWING CARDS.
..1240 IF. ((LGSD.EQ.0).OR (IFLS.NE.4)) .GO TO.20.

LGSE=-1
TPD=FAC(1)
GO TO 1820

1250 HH=H
IF (EMAX.LT.POI) GO TO 1260

C ERROR IS TOO LARGE, REDUCE H. AND REPEAT THE FIRST STEP
IF (TPD1.LT.O.DO) GO TO 1190
LDOUB= 1
ERND=FAC(1) /TPDI
ERND=ERND*ERND*P25
GO TO 950

C
C IF THE GSTOP FEATURE IS ELIMINATED, REMOVE THE C IN COLUMN ONE
C OF THE FOLLOWING CARD
C1260 IFL=4
C AND THEN REMOVE THE 2 FOLLOWING CARDS.

1260 IFL=IFLS
IF (IFL.NE.4) GO TO 1790
TPD=TPD2
IFLAG=3

1-270 I.F (TPD1.GT.TPDI.. GO TO 1280

B325
T=TF INAL
TPD=TPD1
GO TO 1290

1280 T=TOUT
IFL=3

1290 IF C(TPD.EQ.0.DO).AND.(IFLAG.LE.2)) GO TO 310
C
C INTERPOLATE FOR OUTPUT
1300 TP=TPD

DI2)=TP
KQQ2=0
KDC=O
D(1)=PT(1)
DD(1)=PT(1)
DO 131.0 K=2,KQM
DD(l)=DD(1)+PTL1)
TP=TP+PT(1)

1310 D(K+I)=(D(K)*TPI/DD(1)
GO TO 1350

C
C COMPUTE THE INTERPOLATING INTEGRATION COEFFICIENTS
..1320. KQ02=1

L=KQM-KDC
KDC=KDC+1

1330 IF (L.LE.0) GO TO. 1350
TP=O.DO
K=L
J=L+KDC

1340 JS=J-K
TP=TP+GAS(K)*D(.JS+1)
K=K-1
IF (K.GT.0) GO TO 1340
D(J)=TP

C
.C D(J) IS THE INTEGRATION COEFFICIENT FOR THE INTERPOLATION WHICH
C- CORRESPONDS TO GAM(J-KDC,KDC),
C "

L=L-1
GO TO 1330

C END CF COMPUTING INTEGRATION COEFFICIENTS
.C

C PERFORM THE PARTIAL STEP INTEGRATION
1350 J=O

DO 1420 I=1,NE
IF (KDS.LE.0) KDD=IABS(KD(I))
IF (KDC.GT.KDD) GO .TO 1410
TP=0.DO
KQQ=KQ(I)+KQQ2

1360 L=KQQ-KDC
IF (L.LE.0) GO TO 1370
TP=TP+D(KQQ)*DT(LI)
KQQ=KQQ-1
IF (KQQ) 1390,1390,1360

1370 K=J+KDD
L=KDC

1380 L=L-1
IF (L.EQ.0) GO TO 1400
TP=TP*HH+YN(K)*FAC (L)*TPD
K=K-1
GO TO 1380

1390 F(I)=TP
GO TO 1420

1400 Y(K)=YN(K)+HH*TP
1410 J=J+KDD
1420 CONTINUE

IF (KDC.NE.KDMAX) GO TO 1320
C END OF PARTIAL STEP INTEGRATION
C
C IF THE GSTOP FEATURE IS ELIMINATED, REMOVE THE C IN COLUMN ONE

C OF THE FOLLOWING CARD
C GO TO 310
C ALL STATEMENTS BELOW THIS POINT SHOULD THEN BE REMOVED (EXCEPT

C -. FOR THE END STATEMENT)
IF (LGSE) 1800,310,1810

C
C
C SECTION FOR COMPUTING GSTOPS.
C

ENTRY DVDQG(NGNSTOPG,GT)
C
C VARIABLES IN THE CALLING SEQUENCE HAVE THE FOLLOWING TYPES.

INTEGER NGNSTOP
D3UBLE PRECISION G(1)vGT(1)

C.
C A. GSTOP IS DEFINED AS A RETURN WHICH IS MADE TO THE USER WHEN A

C USER SPECIFIED FUNCTION G PASSES THROUGH ZERO. THE USER MAY

C. SPECIFY ANY NUMBER OF FUNCTIONS G OF TWO TYPES. ZEROS OF THE FIRST

.C TYPE ARE LOCATED WITHOUT REQUIRING A DERIVATIVE EVALUATION

C BEYOND THE ZERO. THIS TYPE OF GSTOP REQUIRES THAT G BE EVALUATED

C .. BEFORE EACH DERIVATIVE EVALUATION. ZER.OS OF THE SECOND TYPE ARE

C. LOCATED. USING INTERPOLATION, WHICH IS .MRE ACCURATE THAN THE

C - EXTRAPOLATION USED .IN THE PRECEDING CASE AND ONLY REQUIRES ONE

.C EVALUATION OF G PER STEP. THUS ONE SHOULD USE THE SECOND TYPE OF

.C GSTOP IF POSSIBLE. USERS NOT USING THE GSTOP FEATURE NEED READ

C. NO FURTHER.
C
C DVDQG IS USED AS A SET UP CALL TO INDICATE A CHANGE IN THE NUMBER

C OR TYPES OF GSTOPS. DVDQG SHOULD BE CALLED JUST BEFORE OR JUST

C AFTER. CALLING DVDQ IF
C 1. ONE WANTS TO TEST FOR GSTOPS BEGINNING WITH THE FIRST STEP.

C 2. A JOB IS BEING RUN AFTER ANOTHER JOB THAT USES THE GSTOP

C .FEATURE. DVDQG MUST BE CALLED EVEN IF ALL THE VARIABLES IN

C THE NEW JOB ARE THE SAME.

C IN ADDITION DVDQG MAY BE CALLED AT ANY TIME IN THE INTEGRATION

C TO.CHANGE THE NUMBER OR TYPE OF GSTOPS.
C
C THE USAGE OF THE VARIABLES IS GIVEN BELOW.

C
C NG= THE NUMBER OF COMPONENTS IN G.TO BE EXAMINED FOR A ZERO.

-C . IF DVDQG IS CALLED AFTER THE FIRST. STEP OF THE INTEGRATION,

C THEN G IS EVALUATED FOR THE FIRST TIME AT THE END OF THE

C NEXT STEP AND THUS A GSTOP IS NOT DETECTED IF G CHANGES
C- SIGN ON.THE..CURRENT STEP.. IF .IT -IS .IMPORTANT .THAT G BE

C EVALUATED IMMEDIATELY SET. NG EQUAL TO THE NEGATIVE OF THE

C NUMBER CF COMPONENTS TO BE TESTED FOR A ZERO. SETTING NG
C LESS THAN ZERO WHEN CALLING DVDQG BEFORE THE FIRST STEP IS

C NOT NECESSARY AND IS LIABLE TO BE DISASTEROUS. IF DVDQG IS
C CALLED DURING THE INTEGRATION THE FOLLOWING STATEMENT SHOULD

C BE A GO TO (THE COMPUTED GO TO FCLLOWING THE CALL TO DVDQ1).
C

C NSTOP=THE NUMBER OF COMPONENTS OF G THAT MUST BE EXAMINED FOR

•C A ZERO BEFORE COMPUTING THE DERIVATIVES (FIRST TYPE OF

C GSTOP). IF NSTOP.LTO OR NSTOPoGT.ABS(NG) IFLAG IS SET

C EQUAL 8 AND AN IMMEDIATE RETURN IS MADE. IF NSTOP.GT.0,

C G(1),G(2),...0 G(NSTOP) ARE EXAMINED FOR A ZERO BEFORE EACH

C DERIVATIVE EVALUATION, THE REMAINING COMPONENTS (IF ANY)

C ARE EXAMINED AT THE END OF EACH STEP. WHEN A GSTOP IS FOUND

C THE SUBROUTINE SETS-NSTOP EQUAL TO THE INDEX OF THE

C COMPONENT OF G RESPONSIBLE FOR THE STOP.
C

C G= A VECTOR CONTAINING THE CURRENT VALUES OF THE FUNCTIONS

C- WHOSE. ZER-OS ARE TO BE DETERMINED.
C
C GT= A VECTOR WITH THE SAME DIMENSION AS G USED BY THE

C SUBROUTINE FOR TEMPORARY STORAGE.

C
.C RETURNS FROM CALLING DVDQl WITH IFLAG.GT.8 SHOULD BE INTERPETED

C AS FOLLOWS. (WE USE NSTOPI TO DENOTE THE INITIAL VALUE OF NSTOP.)

C IFLAG
C- = 9 COMPUTE G(NSTOPI+1),...,G(ABS(NG)) (THE COMPONENTS OF G WITH

C ZEROS TO BE LOCATED USING -INTERPOLATION). THEN CALL DVDQ1.

C NO RETURN IS MADE WITH IFLAG=9 IF NSTOPI=ABS(NG).

C =10 COMPUTE G(1),G(2),...,G(NSTOPI) (THE COMPONENTS OF G WITH

C. ZEROS TO BE LOCATED USING EXTRAPOLATION). THEN CALL DVDQ1.

C NO RETURN IS MADE WITH IFLAG=10 IF NSTOPI=0.

C. =11 G(NSTOP) IS APPROXIMATELY ZERO. IF THERE ARE NO

C DISCONT INUITIES SIMPLY CALL DVDQ1 TO CONTINUE THE INTEGRATION.

C =12 G(NSTOP) CHANGES SIGN, BUT THERE IS DIFFICULTY IN CONVERGING

-C TO A ZERO. THE -USER MAY WISH TO VAKE.A SPECIAL CHECK TO BE

C - CERTAIN THAT EVERYTHING IS ALL RIGHT. TO CONTINUE THE

C . INTEGRATION CALL DVDQ1.

DOUBLE PRECISION RG
DOUBLE PRECISION GI
DIMENSION GI(2),RG(3)

-C INITIALIZE FOR GSTOPS
NGA=IABS(NG)
LGSS=-NGA
LGSD=O
LGSE=O
IFLG=-20.
IF (NG) 1425,315,315

1425 IFLG=-IFL
IFLG=-IFL

1430 LGSD=NSTOP
IF (LGSD) 1190,1450,1440

1440 IFL=15
GO TO 1470

"C ENTRY WITH IFL=15
1450 LGSS=O

IF (LGSD-NGA) 1460,1480,1190
1460 LGSS=LGSD+1

IFL=14
1470 IFLAG=IFL-5

GO TO 315
C. ENTRY WITH IFL=14
S1480 DO 1490 I=1,NGA

1490 GT(I)=G(I)
GO TO 1730

WF~ T ~~ r~- - -W WE --- ~i-; r-C~,- -r -- --- - - -

B28

C END OF INITIALIZATICN FOR GSTOPS
"C

C ENTRY TO EVALUATE.G AT THE END OF THE STEP
.1500 LGSE=1
1510 IGK=LGSS

IFLG=O
IFL=9
GO TO 310

C ENTRY TO EVALUATE G BEFORE EVALUATING THE DERIVATIVES
-1520 IFLG=IFL

IFL=10
1530 IFLAG=10

IGKM=LGSD
1540 IGK=1
.1550 GO TO 315

.- 1560 I.GK=IGK+.
IF .IGK.GT. IGKM) GO TO 1650

C ENTRY WITH IFL=9,0O, AND 17
-C TEST FOR G CHANGING SIGN

1570 IF (G(IGK)*GT(IGK)) 1600,1580,1590
1580 IF (GT(IGK).NE.0.DO) GO TO 1600.

IF (TL.EQ.TG) GO TO 1560
1590 IF (LGSE.GT.0) GT(IGK)=G(IIGK)

GO TO 1560
C G CHANGES SIGN -- PREPARE FOR ITERATION TO FIND ZERO
-.1600 NSTOP=IGK ..

NSTOPI=IGK
IFLGS=IFL

C COMPUTE INITIAL VALUE FOR RG (=RATIO OF PARTIAL STEPSIZE WHERE
.C G IS KNOWN/THE INTEGRATION STEPSIZE)

,IF (IFLG.EQoO) GO TO 1610
RG(3)=FAC([1)

* RG(2)=0.DO
IF ((IFLG.EC.2).AND.(IGK.LT.LGSS)) RG(2)=FAC(1)
GO TO 1620

1610 RG(3)=O.DO
RG{2)=-FACL1)

1620 IF (LGSE.LT.O) RG(3)=TPD
LGSE=-3
GI(2)=GT(IGK)
EPSGS=RND
IFL=16
K=
GD TO 1640

C END OF PREPARATION TO BEGIN THE ITERATION

C ENTRY WITH IFL=16
C ITERATE TO FIND GSTOP
1630 K=I'

IF ((GI(2)*G(IGK)).GT.O.DO) K=2
IF (DABS(GI(K)).GT.DABS(G(IGK))) GO TO 1640

C CONVERGENCE PROBLEMS
LGSE=LGSE-1
IF (LGSE.EQ.(-5)) EPSGS=PTSI
EPSGS=EPSGS'PTS4

1640 GI(K)=G(IGK)
R (K)=RG(3)

C SECANT ITERATION (GIVES NEW PARTIAL STEPSIZE/H)
TPD=RG [()-(GI(1)~(RG(2)-RG(1)))/(GI[2)-GI(1))
T=TL+TPD*HH

C TEST FOR CUNVERGENCE OF ITERATION
IF (DABS(TPD-RG(3)).LE.EPSGS) GO TO 1560
RG(3)=TPD
GO TO 1300

1650 IF (10-IFL) 1660,1700,100
1660 IF (IGKMoNE.NGA) GO TO 1710

IF.(LGSE.GT.(-3)) GO TO 1690
-- IF (LSTC.NE.4) GO TO 1670
C ESTIMATE ERROR -- GSTOP IS THE RESULT OF EXTRAPOLATING FROM

C THE INITIAL POINT
TPDI=TPD
RG(3)=TPD
GO TO 1230

1670 IFL=11
IF. (LGSE.LT.(-4)) IFL=12

1680 IFLAG=IFL
C TEST TO SEE IF GSTOP IS PRECEDED BY.ANOTHER STOP

IF (((T-TOUT)*HH.LE.O.DO).AND.((T-TFINAL)*HH.LE.O.DO)) GO TO 1300

C IT IS..
RG(3)=TPD
IFLS=IFL
GO TO 200

1690 LGSE=1
IFL=IFLG
IF (IFL.LT.0) GO TO 20

1700 IGKM=NGA
I.F L=I.FLG .

GO TO 310
1710 IFL=17

IFLAG=9
IGKM=NGA
GO TO 315

-C ENTRY WITH IFL=11 AND 12
C SET PARAMETERS TO INDICATE A GSTOP HAS BEEN FOUND

1720 GT(NSTOPI)=0.DO
1730 LGSE=1

IGKM=NGA
TG=TL
IF (IFLG) 1740,1760,1770

-1740 IF (IFL.LT.13) GO TO 1750
IF (IFLG.EQ.(-20)) GO TO 100
IFL=-IFLG
GO TO 310

1750 HH=H
GO TO 200

1760 TPD=0.DO
T=TL ..

LGSE=-2
GO TO 1300

1770 IF (IFLG-3) 220,200,200
1780 IF (LGSE.EQ.(-1)) GO TO 1790

LGSE=-
G TO 1220

1790 TPD=RG(3)
S. T=.TL+TPD*HH

IF (LGSE.NE.(-1)) GO TO 1670
IFL=IFLS
LSSE=-3
G3 TO 1680

1800 IF. (LGSE+2) 1550,1500,310

-l--- l?"-p a~-x~-r- *,;.

1810 IF (TPD.LE.O.DO) GO TO 310 0

LGSE=-2
1820 IFLG=IFL

IFL=17
IFLAG=9
IF (LGSD .GT. 0) GO TO .1530
GO TO 1540

C END OF SECTION FOR COMPUTING GSTOPS

C
C

.C IN SOME APPLICATIONS, FOR EXAMPLE MULTIPLE QUADRATURE, MORE THAN

C ONE INTEGRATION SUBROUTINE IS REQUIRED. THIS IS NOT NECESSARY IF

C ALL OF THE VARIABLES ASSOCIATED WITH ONE INTEGRATION ARE SAVED

.C OUTSIDE OF THE INTEGRATOR WHILE DOING OTHER INTIEGRATIONS, AND....I:, -

C-.. THEN .RESTORING.THEM. W.HEN. NEEDED. THESE VARIABLES CAN BE RESTORED

C -- BY CALLING AN ENTRY WHICH CONTAINS ALL OF THE VARIABLES IN THE

C CALLING SEQUENCE .AND ALL OF THE VARIABLES THAT MUST BE SAVED

C WHENEVER CHANGING TO A DIFFERENT INTEGRATION. (THIS ENTRY MUST

-C BE ADDED BY THE USER AND SHOULD BE FOLLOWED BY A RETURN STATEMENT.

C AFTER CALLING THIS ENTRY EITHER DVDQ OR DVDQ1 SHOULD BE CALLED

C DEPENDING ON WHETHER THE INTEGRATION IS BEING STARTED OR NOT.)-

-C THE VARIABLES WHICH MUST BE SAVED ARE'
C NE,NVKDS,KDMAXKSOUTLDOUBLFD,LSC,LSTCIFL,IFLStKQM (INTEGERS)

CG. ERND.QDEC ERRMXp E2HAVE, E2HFAC E2HMA X,.RNDC.. (REAL)

-C- HHTOUT,TL (DOUBLE PRECISION)
C IF THE GSTOP FEATURE IS USED,. THE EVALUATION OF G REQUIRES AN

C INTEGRATION, AND THIS INTEGRATION MAY RESULT IN ANOTHER GSTOP,

-C. THEN SOME ADDITIONAL VARIABLES MUST BE SAVED.

-C IN MANY APPLICATIONS NE(=NEQ),NV(=SUM OF ORDERS OF THE

C DIFFERENTIAL EQUATIONS),KDS(=KD),AND KDMAX(=MAXIMUM ORDER OF ANY

'C DIFFERENTIAL EQUATION) WILL BE THE SAME FOR EVERY INTEGRATION,

C. AND- HENCE NEED NOT BE SAVED.-

-C INSTRUCTIONS FOR MAKING CERTAIN CHANGES IN THIS SUBROUTINE ARE

C GIVEN THROUGHOUT THE LISTING. TO FIND THESE INSTRUCTIONS, SEE

C BELOW.
C
C TO .ELIMINATE THE GSTOP CAPABILITY, SEE JUST BELOW CARDS SEQUENCED

C 541,703,745,791,1201,1234,1239,1253, AND 1330.

C THIS MAKES THE SUBROUTINE SHORTER AND REDUCES OVERHEAD A LITTLE.

-C

C TO REMOVE THE INTERPOLATION CAPABILITY, SEE JUST BELOW CARDS

C. SEQUENCED 1070 AND 1219.
C-- ... THE GSTOP FEA-TURE- MUST._ALSO BE ELIMINAT.ED..SINCE .IT REQUIRES THE -

C INTERPOLATION CAPABILITY. IF. OUTPUT POINTS ARE NOT HIT EXACTLY
.C (THEY ARE HIT EXACTLY IF HMAXA.LE.ABS(DELT), AND INITIAL H=

.C-- DELT*(2**(-K)), K=0,1,2...).THEN. IFLAG=3.ON THE FIRST STEP THAT

C (T-TOUT)*H.GT.O (SEE THE USAGE OF DELT). IFLAG IS SET EQUAL TO 4

C ON THE LAST STEP THAT (T-TFINAL)*H.LE.O.
oC

C THE OUTPUT OPTION GIVES OUTPUT OF VARIABLES USED IN THE

C INTEGRATION ON EVERY STEP THAT NEQ.LE.O. (WHICH OF COURSE MUST
.'C BE SET AFTER THE INITIAL CALL TO THE INTEGRATOR) TO ELIMINATE

C THIS OPTION, SEE JUST BELOW CARDS SEQUENCED 834 AND 1057.

C
C THE CHECK OPTION WHEN ADDED TO THE OUTPUT OPTION OUTPUTS EVERY

C VARIABLE IN THE CALLING SEQUENCE JUST AFTER ENTERING AND JUST

C BEFORE LEAVING THE INTEGRATOR WHEN NEQ=O0 THIS OUTPUT IS

C SOMETIMES USEFUL IN DEBUGGING A PROGRAM. TO INCLUDE THIS OPTION

C SEE JUST BELOW CARDS SEQUENCED 613 AND 802.

Chl

~~i-C ~~F ~ ~ i.II--- --

